This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084088 #21 Jul 11 2022 11:15:29 %S A084088 5,11,17,20,23,29,35,41,44,47,53,59,65,68,71,77,80,83,89,92,95,101, %T A084088 107,113,116,119,125,131,137,140,143,149,155,161,164,167,173,176,179, %U A084088 185,188,191,197,203,209,212,215,221,227,233,236,239,245 %N A084088 Numbers k such that k == 2 (mod 3) and the exponent of the highest power of 2 dividing k is even. %C A084088 Numbers that are both in A016789 and A003159. %C A084088 It seems that lim_{n->oo} a(n)/n = 9/2. [This is true. The asymptotic density of this sequence is 2/9. - _Amiram Eldar_, Jan 16 2022] %C A084088 Positions of -1 in the expansion of Sum_{k>=0} x^2^k/(1+x^2^k+x^2^(k+1)) (A084091). %H A084088 Amiram Eldar, <a href="/A084088/b084088.txt">Table of n, a(n) for n = 1..10000</a> %H A084088 <a href="/index/Ar#2-automatic">Index entries for 2-automatic sequences</a>. %t A084088 Select[3 * Range[0, 81] + 2, EvenQ[IntegerExponent[#, 2]] &] (* _Amiram Eldar_, Jan 16 2022 *) %o A084088 (PARI) for(n=0,300,if(valuation(n,2)%2==0&&n%3==2,print1(n","))) %o A084088 (Python) %o A084088 from itertools import count, islice %o A084088 def A084088_gen(): # generator of terms %o A084088 return filter(lambda n:(n&-n).bit_length()&1,count(2,3)) %o A084088 A084088_list = list(islice(A084088_gen(),30)) # _Chai Wah Wu_, Jul 11 2022 %Y A084088 Intersection of A016789 and A003159. %Y A084088 Cf. A084091. %Y A084088 A352273 without the multiples of 9. %K A084088 nonn,easy %O A084088 1,1 %A A084088 _Ralf Stephan_, May 11 2003