This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084103 #40 Jan 01 2024 18:41:23 %S A084103 1,3,3,0,-3,-3,0,3,3,0,-3,-3,0,3,3,0,-3,-3,0,3,3,0,-3,-3,0,3,3,0,-3, %T A084103 -3,0,3,3,0,-3,-3,0,3,3,0,-3,-3,0,3,3,0,-3,-3,0,3,3,0,-3,-3,0,3,3,0, %U A084103 -3,-3,0,3,3,0,-3,-3,0,3,3,0,-3,-3,0,3,3,0,-3,-3,0,3,3,0,-3,-3,0,3,3,0,-3,-3 %N A084103 Expansion of (1+x)^3/(1+x^3). %C A084103 Partial sums are A084104. %H A084103 G. C. Greubel, <a href="/A084103/b084103.txt">Table of n, a(n) for n = 0..1000</a> %H A084103 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1). %F A084103 G.f.: (1+x)^3/(1+x^3). %F A084103 a(n) = Sum_{k=0..n} binomial(2n-k-1, k)(-1)^k*3(n-k). - _Paul Barry_, Jan 21 2005 %F A084103 a(0) = 1 and a(n) = 2*sqrt(3)*sin(n*Pi/3). - _N-E. Fahssi_, Mar 04 2010 %F A084103 Euler transform of length 6 sequence [3, -3, -1, 0, 0, 1]. - _Michael Somos_, Feb 13 2011 %F A084103 a(n) = -a(-n) = 3 * A128834(n) except a(0) = 1. - _Michael Somos_, Feb 13 2011 %F A084103 a(n) = 3*(n^2 mod 3)*(-1)^floor(n/3), n>0. - _Wesley Ivan Hurt_, May 15 2015 %F A084103 The periodic sequence b(n) = a(n+1) has the o.g.f. 3 + G(x) = 3 + 3x(1-x) / (1-x(1-x)) = 3 + 3 L(Cinv(x)) = 3 + 3 x - 3 x^3 - 3 x^4 + ... , where L(x) = x/(1-x) with inverse Linv(x) = x/(1+x) and Cinv(x) = x(1-x), the inverse of the o.g.f. for the shifted Catalan numbers of A000108, C(x) = (1-sqrt(1-4x))/2. Then Ginv(x) = C(Linv(x/3)) = [1 - sqrt[1-4x/(3+x)]]/2. Cf. A267633. - _Tom Copeland_, Jan 25 2016 %e A084103 1 + 3*x + 3*x^2 - 3*x^4 - 3*x^5 + 3*x^7 + 3*x^8 - 3*x^10 - 3*x^11 + ... %p A084103 1, seq(op((-1)^i*[3, 3, 0]), i=0..20); # _Robert Israel_, May 17 2015 %t A084103 CoefficientList[Series[(1 + x)^3/(1 + x^3), {x, 0, 100}], x] (* _Vincenzo Librandi_, May 16 2015 *) %t A084103 Join[{1}, LinearRecurrence[{1,-1}, {3,3}, 30]] (* _G. C. Greubel_, Jan 15 2018 *) %o A084103 (PARI) {a(n) = (n==0) + [0, 3, 3, 0, -3, -3][n%6 + 1]} /* _Michael Somos_, Feb 13 2011 */ %o A084103 (PARI) {a(n) = (n==0) - 3 * (-1)^n * kronecker(-3, n)} /* _Michael Somos_, Feb 13 2011 */ %o A084103 (Magma) I:=[1,3,3]; [n le 3 select I[n] else Self(n-1)-Self(n-2): n in [1..100]]; // _Vincenzo Librandi_, May 16 2015 %Y A084103 Cf. A000108, A084104, A267633. %K A084103 easy,sign %O A084103 0,2 %A A084103 _Paul Barry_, May 15 2003