cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084109 n is congruent to 1 (mod 4) and is not the sum of two squares.

Original entry on oeis.org

21, 33, 57, 69, 77, 93, 105, 129, 133, 141, 161, 165, 177, 189, 201, 209, 213, 217, 237, 249, 253, 273, 285, 297, 301, 309, 321, 329, 341, 345, 357, 381, 385, 393, 413, 417, 429, 437, 453, 465, 469, 473, 489, 497
Offset: 1

Views

Author

William P. Orrick, Jun 18 2003

Keywords

Comments

Alternatively, n is congruent to 1 (mod 4) with at least 2 distinct prime factors congruent to 3 (mod 4) in the squarefree part of n. - Comment corrected by Jean-Christophe Hervé, Oct 25 2015
Applications to the theory of optimal weighing designs and maximal determinants: An (n+1) X (n+1) conference matrix is impossible.
The upper bound of Ehlich/Wojtas on the determinant of a (0,1) matrix of order congruent to 1 (mod 4) cannot be achieved for n X n matrices.
The bound of Ehlich/Wojtas on the determinant of a (-1,1) matrix of order congruent to 2 (mod 4) cannot be achieved for (n+1) X (n+1) matrices.
Numbers with only odd prime factors, of which a strictly positive even number are raised to an odd power and congruent to 3 (mod 4). - Jean-Christophe Hervé, Oct 24 2015

Examples

			a(1) = 3*7 = 21, a(2) = 3*11 = 33, a(3) = 3*19 = 57, a(14) = 3^3*7 = 189.
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 56.

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all entries <= N
    S:= {seq(i,i=1..N,4)} minus
       {seq(seq(i^2+j^2, j=1..floor(sqrt(N-i^2)),2),i=0..floor(sqrt(N)),2)}:
    sort(convert(S,list)); # Robert Israel, Oct 25 2015
  • Mathematica
    a[m_] := Complement[Range[1, m, 4], Union[Flatten[Table[j^2+k^2, {j, 1, Sqrt[m], 2}, {k, 0, Sqrt[m], 2}]]]]
  • PARI
    is(n)=if(n%4!=1, return(0)); my(f=factor(n)); for(i=1, #f~, if(f[i, 1]%4==3 && f[i, 2]%2, return(1))); 0 \\ Charles R Greathouse IV, Jul 01 2016