A084109 n is congruent to 1 (mod 4) and is not the sum of two squares.
21, 33, 57, 69, 77, 93, 105, 129, 133, 141, 161, 165, 177, 189, 201, 209, 213, 217, 237, 249, 253, 273, 285, 297, 301, 309, 321, 329, 341, 345, 357, 381, 385, 393, 413, 417, 429, 437, 453, 465, 469, 473, 489, 497
Offset: 1
Examples
a(1) = 3*7 = 21, a(2) = 3*11 = 33, a(3) = 3*19 = 57, a(14) = 3^3*7 = 189.
References
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 56.
Links
- Jean-Christophe Hervé, Table of n, a(n) for n = 1..1000
- H. Ehlich, Determinantenabschätzungen für binäre Matrizen, Math. Z. 83 (1964) 123-132.
- D. Raghavarao, Some aspects of weighing designs, Ann. Math. Stat. 31 (1960) 878-884.
Programs
-
Maple
N:= 1000: # to get all entries <= N S:= {seq(i,i=1..N,4)} minus {seq(seq(i^2+j^2, j=1..floor(sqrt(N-i^2)),2),i=0..floor(sqrt(N)),2)}: sort(convert(S,list)); # Robert Israel, Oct 25 2015
-
Mathematica
a[m_] := Complement[Range[1, m, 4], Union[Flatten[Table[j^2+k^2, {j, 1, Sqrt[m], 2}, {k, 0, Sqrt[m], 2}]]]]
-
PARI
is(n)=if(n%4!=1, return(0)); my(f=factor(n)); for(i=1, #f~, if(f[i, 1]%4==3 && f[i, 2]%2, return(1))); 0 \\ Charles R Greathouse IV, Jul 01 2016
Comments