This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084113 #7 Feb 16 2025 08:32:49 %S A084113 0,1,1,2,1,2,1,2,2,2,1,4,1,2,2,3,1,4,1,4,2,2,1,5,2,2,2,4,1,5,1,4,2,2, %T A084113 2,6,1,2,2,5,1,5,1,4,4,2,1,6,2,4,2,4,1,5,2,5,2,2,1,7,1,2,4,4,2,5,1,4, %U A084113 2,5,1,7,1,2,4,4,2,5,1,6,3,2,1,7,2,2,2,5,1,7,2,4,2,2,2,7,1,4,4,6,1,5,1,5,5 %N A084113 Number of multiplications when calculating A084110(n). %C A084113 a(n) = A000005(n)-1-A084114(n) = A032741(n)-A084114(n) = (A032741(n)+A084115(n))/2; %C A084113 a(n) = 1 iff n is prime. %H A084113 Reinhard Zumkeller, <a href="/A084113/b084113.txt">Table of n, a(n) for n = 1..10000</a> %H A084113 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DivisorProduct.html">Divisor Product</a>. %o A084113 (Haskell) %o A084113 a084113 = f 0 1 . a027750_row where %o A084113 f c _ [] = c %o A084113 f c x (d:ds) = if r == 0 then f c x' ds else f (c + 1) (x * d) ds %o A084113 where (x', r) = divMod x d %o A084113 -- _Reinhard Zumkeller_, Jul 31 2014 %Y A084113 Cf. A027750, A084110, A084114. %K A084113 nonn %O A084113 1,4 %A A084113 _Reinhard Zumkeller_, May 12 2003