This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084126 #27 Apr 22 2025 03:49:06 %S A084126 2,2,3,2,2,3,3,2,5,2,3,2,5,2,3,2,7,3,5,3,2,2,5,3,2,7,2,5,2,3,7,3,2,5, %T A084126 2,3,5,2,7,11,2,3,3,7,2,3,2,11,5,2,5,2,3,7,2,13,3,2,3,5,11,2,3,2,7,5, %U A084126 2,11,3,2,5,7,2,3,13,2,5,3,13,3,11,2,7,2,5,3,2,2,7,17,3,5,2,13,7,2,3,5,3,2 %N A084126 Prime factor <= other prime factor of n-th semiprime. %C A084126 Lesser of the prime factors of A001358(n). - _Jianing Song_, Aug 05 2022 %H A084126 Zak Seidov, <a href="/A084126/b084126.txt">Table of n, a(n) for n = 1..1000</a> %H A084126 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Semiprime.html">Semiprime</a> %F A084126 a(n) = A020639(A001358(n)). %F A084126 a(n) = A001358(n)/A006530(A001358(n)). [corrected by _Michel Marcus_, Jul 18 2020] %F A084126 a(n) = A001358(n)/A084127(n). %t A084126 FactorInteger[#][[1,1]]&/@Select[Range[500],PrimeOmega[#]==2&] (* _Harvey P. Dale_, Jun 25 2018 *) %o A084126 (Haskell) %o A084126 a084126 = a020639 . a001358 -- _Reinhard Zumkeller_, Nov 25 2012 %o A084126 (Python) %o A084126 from sympy import primepi, primerange, primefactors %o A084126 def A084126(n): %o A084126 def bisection(f,kmin=0,kmax=1): %o A084126 while f(kmax) > kmax: kmax <<= 1 %o A084126 kmin = kmax >> 1 %o A084126 while kmax-kmin > 1: %o A084126 kmid = kmax+kmin>>1 %o A084126 if f(kmid) <= kmid: %o A084126 kmax = kmid %o A084126 else: %o A084126 kmin = kmid %o A084126 return kmax %o A084126 def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1))) %o A084126 return min(primefactors(bisection(f,n,n))) # _Chai Wah Wu_, Apr 03 2025 %Y A084126 Cf. A001358 (the semiprimes), A084127 (greater of the prime factors of the semiprimes). %Y A084126 Cf. A068318, A087718, A087794, A089994, A089995, A096916, A106550, A106554, A108541, A131284, A138510, A138511. %K A084126 nonn %O A084126 1,1 %A A084126 _Reinhard Zumkeller_, May 15 2003