This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084182 #19 Dec 19 2023 18:15:41 %S A084182 1,2,10,26,82,242,730,2186,6562,19682,59050,177146,531442,1594322, %T A084182 4782970,14348906,43046722,129140162,387420490,1162261466,3486784402, %U A084182 10460353202,31381059610,94143178826,282429536482,847288609442,2541865828330,7625597484986 %N A084182 a(n) = 3^n + (-1)^n - [1/(n+1)], where [] represents the floor function. %C A084182 Binomial transform of A084181. %C A084182 From _Peter Bala_, Dec 26 2012: (Start) %C A084182 Let F(x) = product {n >= 0} (1 - x^(3*n+1))/(1 - x^(3*n+2)). This sequence is the simple continued fraction expansion of the real number F(-1/3) = 1.47627 73316 74531 44215 ... = 1 + 1/(2 + 1/(10 + 1/(26 + 1/(82 + ...)))). See A111317. %C A084182 (End) %H A084182 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,3). %F A084182 a(n) = 3^n + (-1)^n - 0^n. %F A084182 G.f.: (1+3*x^2)/((1+x)*(1-3*x)). %F A084182 E.g.f.: exp(3*x)-exp(0)+exp(-x). %F A084182 a(n) = 2 * A046717(n) for n >= 1. %t A084182 LinearRecurrence[{2,3},{1,2,10},30] (* _Harvey P. Dale_, Apr 27 2016 *) %Y A084182 Except for leading term, same as A102345. %Y A084182 Cf. A046717, A111317. %K A084182 easy,nonn %O A084182 0,2 %A A084182 _Paul Barry_, May 19 2003