This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084190 #26 Jun 25 2022 21:53:38 %S A084190 1,1,2,3,4,10,6,21,8,36,10,330,12,78,28,105,16,680,18,684,60,210,22, %T A084190 53130,24,300,104,702,28,36540,30,3255,160,528,204,157080,36,666,228, %U A084190 62244,40,31980,42,9030,616,990,46,2497110,48,3528,400,5100,52,468520 %N A084190 Least common multiple of {d-1: d > 1 and d divides n}. %C A084190 Considering the set of divisors > 1 of n reduced by 1, a(n) is the smallest number whose divisors contain this set; %C A084190 a(n) < n iff n=p^k, p prime and 1 <= k <= 2: a(A001248(n)) < A001248(n), a(A000430(n)) < A000430(n), a(A080257(n))> A080257(n); %C A084190 a(n) is odd iff n=2^k. %H A084190 Carl R. White, <a href="/A084190/b084190.txt">Table of n, a(n) for n = 1..10000</a> %e A084190 n=35: divisors > 1 of 35 = {5,7,35}, a(35) = lcm(4,6,34) = 204; %e A084190 n=37: divisors > 1 of 37 = {37}, a(37) = lcm(36) = 36. %t A084190 Join[{1}, Table[LCM @@ (Rest[Divisors[n]] - 1), {n, 2, 100}]] (* _T. D. Noe_, Apr 25 2012 *) %o A084190 (PARI) a(n)=if(n>2,lcm(apply(k->k-1,vecextract(divisors(n),"2.."))),1) \\ _Charles R Greathouse IV_, Apr 25 2012 %o A084190 (Haskell) %o A084190 a084190 1 = 1 %o A084190 a084190 n = foldl1 lcm $ map (subtract 1) $ tail $ a027750_row' n %o A084190 -- _Reinhard Zumkeller_, May 08 2012 %o A084190 (Python) %o A084190 from math import lcm %o A084190 from sympy import divisors %o A084190 def A084190(n): return lcm(*(d-1 for d in divisors(n,generator=True) if d > 1)) # _Chai Wah Wu_, Jun 25 2022 %Y A084190 Cf. A084191(n) = a(a(n)), A007955. %Y A084190 Cf. A027750. %Y A084190 Cf. A258409. %K A084190 nonn %O A084190 1,3 %A A084190 _Reinhard Zumkeller_, May 18 2003 %E A084190 a(45) was erroneously split into 61 and 6; repaired by _Carl R. White_, Apr 25 2012