This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084206 #10 Jul 26 2018 17:50:05 %S A084206 1,1,-2,7,-27,115,-510,2343,-11029,52896,-257457,1268098,-6307546, %T A084206 31633044,-159757597,811708539,-4145882814,21273287952,-109603172373, %U A084206 566748274099,-2940175511195,15297961574259,-79808998488751,417373462315834 %N A084206 G.f. A(x) defined by: A(x)^6 consists entirely of integer coefficients between 1 and 6 (A083946); A(x) is the unique power series solution with A(0)=1. %C A084206 Limit a(n)/a(n+1) -> r = -0.1815238859919 where A(r)=0. %H A084206 N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0509316">On the Integrality of n-th Roots of Generating Functions</a>, arXiv:math/0509316 [math.NT], 2005-2006. %H A084206 N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://doi.org/10.1016/j.jcta.2006.03.018">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745. %t A084206 kmax = 25; %t A084206 A[x_] = Sum[a[k] x^k, {k, 0, kmax}]; %t A084206 coes = CoefficientList[A[x]^6 + O[x]^(kmax + 1), x]; %t A084206 r = {a[0] -> 1, a[1] -> 1}; %t A084206 coes = coes /. r; %t A084206 Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 6, a[k-1], Integers] // ToRules]; %t A084206 coes = coes /. r, {k, 3, kmax + 1}]; %t A084206 Table[a[k], {k, 0, kmax}] /. r (* _Jean-François Alcover_, Jul 26 2018 *) %Y A084206 Cf. A083946, A084202-A084205, A084207-A084212. %K A084206 sign %O A084206 0,3 %A A084206 _Paul D. Hanna_, May 20 2003