cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084211 G.f. A(x) defined by: A(x)^11 consists entirely of integer coefficients between 1 and 11 (A084066); A(x) is the unique power series solution with A(0)=1.

This page as a plain text file.
%I A084211 #6 Jul 26 2018 18:43:12
%S A084211 1,1,-4,26,-189,1479,-12106,102224,-883031,7761209,-69153920,
%T A084211 623018880,-5664270185,51892998965,-478521450110,4437418074830,
%U A084211 -41350439060725,386983852716405
%N A084211 G.f. A(x) defined by: A(x)^11 consists entirely of integer coefficients between 1 and 11 (A084066); A(x) is the unique power series solution with A(0)=1.
%C A084211 Limit a(n)/a(n+1) --> r = -0.100000000011 where A(r)=0.
%t A084211 kmax = 20;
%t A084211 A[x_] = Sum[a[k] x^k, {k, 0, kmax}];
%t A084211 coes = CoefficientList[A[x]^11 + O[x]^(kmax + 1), x];
%t A084211 r = {a[0] -> 1, a[1] -> 1};
%t A084211 coes = coes /. r;
%t A084211 Do[r = Flatten @ Append[r, Reduce[1 <= coes[[k]] <= 11, a[k-1], Integers] // ToRules];
%t A084211 coes = coes /. r, {k, 3, kmax + 1}];
%t A084211 Table[a[k], {k, 0, kmax}] /. r (* _Jean-François Alcover_, Jul 26 2018 *)
%Y A084211 Cf. A084066, A084202-A084210, A084212.
%K A084211 sign
%O A084211 0,3
%A A084211 _Paul D. Hanna_, May 20 2003