A084234 Smallest k such that |M(k)| = n^2, where M(x) is Mertens's function A002321.
1, 31, 443, 1637, 2803, 9749, 19111, 24110, 42833, 59426, 95514, 230227, 297335, 297573, 299129, 355541, 897531, 924717, 926173, 1062397, 1761649, 1763079, 1789062, 3214693, 3218010, 3232958, 4962865, 5307549, 5343710, 6433477, 6435874, 6473791, 9990083, 10188647
Offset: 1
Keywords
References
- Karl Sabbagh, The Riemann Hypothesis, The Greatest Unsolved Problem in Mathematics, Farrar, Straus and Giroux, New York, 2002, page 191.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..100 (calculated using the b-file at A051402)
Programs
-
Mathematica
i = s = 0; Do[While[Abs[s] < n^2, s = s + MoebiusMu[i]; i++ ]; Print[i - 1], {n, 1, 25}]
Formula
a(n) = A051402(n^2). - Amiram Eldar, May 06 2024
Extensions
a(31)-a(34) from Amiram Eldar, May 06 2024
Comments