A084236 a(n) = M(2^n), where M(n) is Mertens's function, A002321.
1, 0, -1, -2, -1, -4, -1, -2, -1, -4, -4, 7, -19, 22, -32, 26, 14, -20, 24, -125, 257, -362, 228, -10, 211, -1042, 329, 330, -1703, 6222, -10374, 9569, 1814, -10339, -3421, 8435, 38176, -28118, 38729, -135944, 101597, 15295, -169338, 259886, -474483, 1726370, -3554573
Offset: 0
Keywords
Links
- Chai Wah Wu and Amiram Eldar, Table of n, a(n) for n = 0..75 (terms 0..73 from Hurst's paper added by Chai Wah Wu, terms 74..75 from Helfgott and Thompson's paper added by Amiram Eldar)
- Harald A. Helfgott and Lola Thompson, Summing mu(n): a faster elementary algorithm, arXiv:2101.08773 [math.NT], 2021.
- Greg Hurst, Computations of the Mertens function and improved bounds on the Mertens conjecture, Mathematics of Computation, Vol. 87, No. 310 (2018), pp. 1013-1028; arXiv preprint, arXiv:1610.08551 [math.NT], 2016-2017.
Programs
-
Mathematica
s = 0; i = 1; Do[ While[i <= 2^n, s = s + MoebiusMu[i]; i++ ]; Print[s], {n, 0, 50}]
-
PARI
a(n) = sum(k=1, 2^n, moebius(k)) \\ Indranil Ghosh, Mar 15 2017
Extensions
a(31)-a(46) from Hurst's paper (copied by Charles R Greathouse IV, Oct 15 2018)