This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084268 #56 Feb 16 2025 08:32:49 %S A084268 1,1,1,1,2,1,1,6,3,1,1,12,16,4,1,1,34,84,31,5,1,1,87,579,318,52,6,1,1, %T A084268 302,5721,5366,867,81,7,1,1,1118,87381,155291,28722,2028,118,8,1,1, %U A084268 5478,2104349,7855628,1919895,115391,4251,165,9,1,1,32302,78315231,675054876,250530482,14662562,393963,8214,222,10,1 %N A084268 Triangle read by rows: T(n,k) is the number of simple graphs on n unlabeled nodes having chromatic number k, 1 <= k <= n. %C A084268 T(n,1) = T(n,n) = 1 (here we count the empty graph and the complete graph). T(n,n-1) = n-1 (here we count the graphs with clique number equal to n-1). - _Geoffrey Critzer_, Oct 12 2016 %C A084268 Row sums give A000088. - _Joerg Arndt_, Oct 13 2016 %H A084268 Keith Briggs, <a href="http://keithbriggs.info/cgt.html">combinatorial graph theory</a>, see entry "number of graphs on n nodes with clique number k". %H A084268 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000098">The chromatic number of a graph.</a> %H A084268 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChromaticNumber.html">Chromatic Number</a> %H A084268 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/n-ChromaticGraph.html">n-Chromatic Graph</a> %e A084268 Triangle begins: %e A084268 1; %e A084268 1, 1; %e A084268 1, 2, 1; %e A084268 1, 6, 3, 1; %e A084268 1, 12, 16, 4, 1; %e A084268 1, 34, 84, 31, 5, 1; %e A084268 1, 87, 579, 318, 52, 6, 1; %e A084268 1, 302, 5721, 5366, 867, 81, 7, 1; %e A084268 1, 1118, 87381, 155291, 28722, 2028, 118, 8, 1; %e A084268 1, 5478, 2104349, 7855628, 1919895, 115391, 4251, 165, 9, 1; %e A084268 ... %o A084268 (Sage) # prints triangle with a leading zero in each row %o A084268 for n in range(1, 8) : %o A084268 st = [0 for j in range(n+1)] %o A084268 G = graphs(n) %o A084268 for g in G : %o A084268 st[ g.chromatic_number() ] += 1 %o A084268 print(st) %o A084268 # _Joerg Arndt_, Oct 13 2016 %Y A084268 Columns k=1..9 are A057427, A076278, A076279, A076280, A076281, A076282, A076283, A205567, A205568. %Y A084268 Partial row sums include A033995, A076315, A076316, A076317, A076318, A076319, A076320, A076321. %Y A084268 Row sums are A000088. %Y A084268 Cf. A084269 (connected), A115597 (essentially the same sequence). %K A084268 nonn,tabl %O A084268 1,5 %A A084268 _Eric W. Weisstein_, May 24 2003 %E A084268 Offset corrected by _Joerg Arndt_, Oct 13 2016 %E A084268 a(36)-a(55) from _Joerg Arndt_, Oct 15 2016 %E A084268 a(56)-a(66) from _Andrew Howroyd_, Dec 02 2018