cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084299 Smallest primes such that the subsequent terms of consecutive prime differences (A001223) modulo 6 (A054763) displays repeatedly n times a {0,2,4} pattern of remainders of differences.

This page as a plain text file.
%I A084299 #11 Nov 05 2024 03:14:45
%S A084299 83,2903,5897,319499,346943,7974179,15262433,33954251,5521833683,
%T A084299 83993232497,848099080883,1293322433639
%N A084299 Smallest primes such that the subsequent terms of consecutive prime differences (A001223) modulo 6 (A054763) displays repeatedly n times a {0,2,4} pattern of remainders of differences.
%e A084299 For n=1: a(1) = 83 is followed by [6,8,4].
%e A084299 For n=2: a(2) = 2903 is followed by [6,2,4,18,2,4].
%e A084299 For n=3: a(3) = 5897 is followed by [6,20,4,12,14,28,6,20,4].
%e A084299 For n=4: a(4) = 319499 is followed by [12,8,22,6,20,10,12,2,10,6,32,34].
%e A084299 For n=5: a(5) = 346943 is followed by [18,2,40,....,30,2,10] differences corresponding to n "wavelet" of [0,2,4] remainders modulo 6.
%t A084299 (* generates a(5) *) d[x_] := Prime[x+1]-Prime[x]; md[x_] := Mod[Prime[x+1]-Prime[x], 6]; h={k1=0, k2=2, k3=4}; k=0; Do[If[Equal[md[n], k1]&&Equal[md[n+1], k2]&& Equal[md[n+2], k3]&&Equal[md[n+3], k1]&&Equal[md[n+4], k2]&&Equal[md[n+5], k3] &&Equal[md[n+6], k1]&&Equal[md[n+7], k2]&&Equal[md[n+8], k3] &&Equal[md[n+9], k1]&&Equal[md[n+10], k2]&&Equal[md[n+11], k3]&& Equal[md[n+12], k1]&&Equal[md[n+13], k2]&&Equal[md[n+14], k3], k=k+1; Print[{k, n, Prime[n], Table[md[n+j], {j, -1, 15}], Table[d[n+j], {j, -1, 15}]}]], {n, 2, 10000000}]
%o A084299 (PARI) lista(pmax) = {my(rec = 0, m = 0, c = 0, prv = 2, p0 = 0, d); forprime(p = 3, pmax, d = (p-prv)%6; if(d == 0 && m == 0, p0 = prv); if(d == c, m++; c = (c+2)%6; if(!(m%3) && m/3 > rec, print1(p0, ", "); rec++; m = 0), if(d == 0, p0 = prv; c = 2; m = 1, c = 0; m = 0)); prv = p);} \\ _Amiram Eldar_, Nov 04 2024
%Y A084299 Cf. A001223, A054763, A016045.
%K A084299 nonn,more
%O A084299 1,1
%A A084299 _Labos Elemer_, Jun 02 2003
%E A084299 a(9)-a(12) from _Amiram Eldar_, Nov 04 2024