cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084302 Remainder of tau(n) modulo 6.

This page as a plain text file.
%I A084302 #14 Jul 11 2024 01:23:51
%S A084302 1,2,2,3,2,4,2,4,3,4,2,0,2,4,4,5,2,0,2,0,4,4,2,2,3,4,4,0,2,2,2,0,4,4,
%T A084302 4,3,2,4,4,2,2,2,2,0,0,4,2,4,3,0,4,0,2,2,4,2,4,4,2,0,2,4,0,1,4,2,2,0,
%U A084302 4,2,2,0,2,4,0,0,4,2,2,4,5,4,2,0,4,4,4,2,2,0,4,0,4,4,4,0,2,0,0,3,2,2,2,2,2
%N A084302 Remainder of tau(n) modulo 6.
%C A084302 The sums of the first 10^k terms, for k = 1, 2, ..., are 27, 236, 2275, 22166, 220070, 2195376, 21933228, 219259514, 2192385128, 21923168052, ... . Conjecture: the asymptotic mean of this sequence is 3*zeta(3)/zeta(2) = 3 * A253905 = 2.192288... . The conjecture is true if A211337 and A211338 have an equal asymptotic density (see also A059269). - _Amiram Eldar_, Jul 11 2024
%H A084302 Antti Karttunen, <a href="/A084302/b084302.txt">Table of n, a(n) for n = 1..10000</a>
%H A084302 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F A084302 a(n) = A000005(n) modulo 6.
%t A084302 Mod[DivisorSigma[0,Range[110]],6] (* _Harvey P. Dale_, Sep 04 2020 *)
%o A084302 (PARI) A084302(n) = (numdiv(n)%6); \\ _Antti Karttunen_, Jul 07 2017
%Y A084302 Cf. A000005, A054763, A084299, A084300, A084301.
%Y A084302 Cf. A059269, A211337, A211338
%K A084302 easy,nonn
%O A084302 1,2
%A A084302 _Labos Elemer_, Jun 02 2003