A084321 Least number k such that between k! and (k+1)! there are n powers of 2 (each interval includes (k+1)! but not k!).
1, 3, 5, 10, 19, 35, 64, 139, 256, 536, 1061, 2095, 4169, 8282, 16517, 32903, 65646, 131205, 262579, 525083, 1048893, 2098826, 4195521, 8390583, 16782032, 33560609, 67118347, 134229613, 268453180, 536890474, 1073764782, 2147523518
Offset: 1
Keywords
Examples
a(3)=5 since between 5!=120 and 6!=720 is the first time 3 powers of 2 arise, namely, 128, 256 and 512.
Links
- Kevin Ryde, Table of n, a(n) for n = 1..750
- Kevin Ryde, C Code
Programs
-
C
/* See links */
-
Mathematica
LogBase2Stirling[n_] := N[ Log[2, 2 Pi n]/2 + n*Log[2, n/E] + Log[2, 1 + 1/(12n) + 1/(288n^2) - 139/(51840n^3) - 571/(2488320n^4) + 163879/(209018880n^5)], 64]; k = 1; Do[ While[ Floor[ LogBase2Stirling[k + 1]] - Floor[ LogBase2Stirling[k]] < n, k++ ]; Print[k], {n, 1, 33}]
Formula
a(n) = minimum x for which floor(log_2((x+1)!)) - floor(log_2(x!)) = n.
a(n) = minimum x for which A084320(x) = n.
Extensions
Edited and extended by Robert G. Wilson v, Jun 24 2003
Definition clarified by Jianing Song, Aug 08 2022
a(26) corrected by Kevin Ryde, Apr 25 2024
Comments