This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084370 #15 Sep 30 2021 20:03:13 %S A084370 9,30,67,136,237,386,587,852,1213,1658,2227,2932,3765,4766,5939,7324, %T A084370 8917,10746,12851,15200,17845,20794,24083,27748,31785,36250,41107, %U A084370 46376,52113,58350,65111,72444,80353,88858,98003,107744,118201,129410,141355,154080 %N A084370 Convolution of odd primes with themselves. %H A084370 Harvey P. Dale, <a href="/A084370/b084370.txt">Table of n, a(n) for n = 1..1000</a> %F A084370 a(n) = Sum_{k=1..n} A065091(k) * A065091(n-k+1). %e A084370 a(4) = 11*3 + 7*5 + 5*7 + 3*11 = 136. %t A084370 Table[With[{c=Prime[Range[2,n]]},ListConvolve[c,c]],{n,2,40}]//Flatten (* _Harvey P. Dale_, Apr 25 2016 *) %o A084370 (PARI) conv(n)=local(v,s); v=primes(n+1); s=0; for(i=2, length(v), s+=v[i]*v[length(v)-i+2]); s %o A084370 for(n=1,40,print1(conv(n)",")) %o A084370 (Python) %o A084370 from numpy import convolve %o A084370 from sympy import prime, primerange %o A084370 def aupton(terms): %o A084370 p = list(primerange(3, prime(terms+1)+1)) %o A084370 return list(convolve(p, p))[:terms] %o A084370 print(aupton(40)) # _Michael S. Branicky_, Sep 30 2021 %Y A084370 Cf. A065091, A014342, A209403. %K A084370 nonn %O A084370 1,1 %A A084370 _Jon Perry_, Jun 23 2003