This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084416 #25 Jun 17 2022 15:58:20 %S A084416 1,3,2,13,12,6,75,74,60,24,541,540,510,360,120,4683,4682,4620,4080, %T A084416 2520,720,47293,47292,47166,45360,36960,20160,5040,545835,545834, %U A084416 545580,539784,498960,372960,181440,40320,7087261,7087260,7086750,7068600,6882120,6048000,4142880,1814400,362880 %N A084416 Triangle read by rows: T(n,k) = Sum_{i=k..n} i!*Stirling2(n,i), n >= 1, 1 <= k <= n. %C A084416 Interpolates between A000670 and factorials. %C A084416 From _Thomas Scheuerle_, Apr 25 2022: (Start) %C A084416 Number of preferential arrangements of n labeled elements when at least k ranks are required. %C A084416 This sequence starts for k and n with offset 1. If it would start with k = 0, we would observe in column k = 0 an exact copy of column k = 1 with a preceding one at n = 0, k = 0. The difference between 0 ranks and one rank (all in the same rank) is only for n = 0 where k = 0 allows zero-filled ranks as an valid arrangement, too. (End) %F A084416 E.g.f. for m-th column: (exp(x)-1)^m/(2-exp(x)). - _Vladeta Jovovic_, Sep 14 2003 %F A084416 T(n, k) = Sum_{m = k..n} A090582(n + 1, m + 1). %F A084416 From _Thomas Scheuerle_, Apr 25 2022: (Start) %F A084416 Sum_{k = 0..n} T(n, k) = A005649(n). Column k = 0 is not part of data. %F A084416 Sum_{k = 1..n} T(n, k) = A069321(n). %F A084416 T(n, 0) = A000670(n). Column k = 0 is not part of data. %F A084416 T(n, 1) = A000670(n), for n > 0. %F A084416 T(n, 2) = A052875(n). %F A084416 T(n, 3) = A102232(n). %F A084416 T(n, n) = n! = A000142. (End) %e A084416 Triangle begins with T(n,k): %e A084416 k= 1, 2, 3, 4, 5 %e A084416 n=1 1 %e A084416 n=2 3, 2 %e A084416 n=3 13, 12, 6 %e A084416 n=4 75, 74, 60, 24 %e A084416 n=5 541, 540, 510, 360, 120 %e A084416 ... %e A084416 From _Thomas Scheuerle_, Apr 25 2022: (Start) %e A084416 If we would add n = 0, k = 0 to the data of this sequence: %e A084416 k= 0, 1, 2, %e A084416 n=0 1 %e A084416 n=1 1, 1 %e A084416 n=2 3, 3, 2 %e A084416 ... %e A084416 T(n, 3) with 3 preceding zeros is: 0,0,0,6,60,510,4620,... %e A084416 This sequence has the e.g.f.: (e^x-1)^3/(2-e^x). %e A084416 . %e A084416 13 arrangements for n = 3 and k = 1 (one rank required): %e A084416 1,2,3 1,2|3 2,3|1 1,3|2 1|2,3 2|1,3 3|1,2 1|2|3 1|3|2 2|1|3 2|3|1 3|1|2 3|2|1 %e A084416 12 arrangements for n = 3 and k = 2 (two ranks required): %e A084416 1,2|3 2,3|1 1,3|2 1|2,3 2|1,3 3|1,2 1|2|3 1|3|2 2|1|3 2|3|1 3|1|2 3|2|1 %e A084416 6 arrangements for n = 3 and k = 3 (three ranks required): %e A084416 1|2|3 1|3|2 2|1|3 2|3|1 3|1|2 3|2|1 %e A084416 . (End) %p A084416 T := (n,k)->sum(i!*Stirling2(n,i),i=k..n): seq(seq(T(n,k),k=1..n),n=1..10); %o A084416 (PARI) row(n) = vector(n, k, sum(i=k, n, i!*stirling(n, i, 2))); \\ _Michel Marcus_, Apr 20 2022 %Y A084416 Mirror image of array in A084417. %Y A084416 Cf. A005649, A069321 (row sums). %Y A084416 A000670(n) (column k = 1), A052875(n) (column k = 2), A102232(n) (column k = 3). %Y A084416 Cf. A000142, A008277. %K A084416 nonn,tabl,easy %O A084416 1,2 %A A084416 _N. J. A. Sloane_, Jun 24 2003 %E A084416 More terms from _Emeric Deutsch_, May 11 2004 %E A084416 More terms from _Michel Marcus_, Apr 20 2022