This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084570 #32 Sep 08 2022 08:45:11 %S A084570 1,2,6,12,23,38,60,88,125,170,226,292,371,462,568,688,825,978,1150, %T A084570 1340,1551,1782,2036,2312,2613,2938,3290,3668,4075,4510,4976,5472, %U A084570 6001,6562,7158,7788,8455,9158,9900,10680,11501,12362,13266,14212,15203,16238 %N A084570 Partial sums of A084263. %C A084570 Partial sums give A084569. %H A084570 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-2,3,-1). %F A084570 a(n) = (-1)^n/4 + (2n^3 + 6n^2 + 10n + 9)/12. %F A084570 a(n) = Sum_{j=0..n} (Sum_{i=0..j} (i + (-1)^i)). %F A084570 From _Arun Giridhar_, Apr 03 2015: (Start) %F A084570 a(n) = ceiling(A006527(n+1) / 2). %F A084570 a(n) = ceiling((n^3 + 3n^2 + 5n + 3)/6). %F A084570 (End) %F A084570 G.f.: (1-x+2*x^2)/((1+x)*(1-x)^4). - _Vincenzo Librandi_, Apr 04 2015 %t A084570 LinearRecurrence[{3,-2,-2,3,-1},{1,2,6,12,23},50] (* _Harvey P. Dale_, Nov 12 2014 *) %t A084570 CoefficientList[Series[(1 - x + 2 x^2) / ((1 + x) (1 - x)^4), {x, 0, 50}], x] (* _Vincenzo Librandi_, Apr 04 2015 *) %o A084570 (PARI) a(n) = sum(j=0, n, sum(i=0, j, (i+(-1)^i))); %o A084570 vector(50, n, n--; a(n)) \\ _Michel Marcus_, Apr 04 2015 %o A084570 (Magma) [(-1)^n/4 + (2*n^3+6*n^2+10*n+ 9)/12: n in [0..50]]; // _Vincenzo Librandi_, Apr 04 2015 %K A084570 easy,nonn %O A084570 0,2 %A A084570 _Paul Barry_, May 31 2003