This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084612 #14 Mar 26 2023 03:50:14 %S A084612 1,1,1,-2,1,2,-3,-4,4,1,3,-3,-11,6,12,-8,1,4,-2,-20,1,40,-8,-32,16,1, %T A084612 5,0,-30,-15,81,30,-120,0,80,-32,1,6,3,-40,-45,126,141,-252,-180,320, %U A084612 48,-192,64,1,7,7,-49,-91,161,357,-363,-714,644,728,-784,-224,448,-128,1,8,12,-56,-154,168,700,-328,-1791,656,2800 %N A084612 Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1 + x - 2*x^2)^n. %H A084612 Paul D. Hanna, <a href="/A084612/b084612.txt">Table of n, a(n) for n = 0..1023</a> %F A084612 From _G. C. Greubel_, Mar 25 2023: (Start) %F A084612 T(n, k) = Sum_{j=0..k} binomial(n,k-j)*binomial(k-j,j)*(-2)^j, for 0 <= k <= 2*n. %F A084612 T(n, 2*n) = (-2)^n. %F A084612 T(n, 2*n-1) = (-1)^(n-1)*A001787(n), n >= 1. %F A084612 Sum_{k=0..2*n} T(n, k) = A000007(n). %F A084612 Sum_{k=0..2*n} (-1)^k*T(n, k) = (-2)^n. (End) %e A084612 Triangle begins: %e A084612 1; %e A084612 1, 1, -2; %e A084612 1, 2, -3, -4, 4; %e A084612 1, 3, -3, -11, 6, 12, -8; %e A084612 1, 4, -2, -20, 1, 40, -8, -32, 16; %e A084612 1, 5, 0, -30, -15, 81, 30, -120, 0, 80, -32; %e A084612 1, 6, 3, -40, -45, 126, 141, -252, -180, 320, 48, -192, 64; %t A084612 T[n_, k_]:= Sum[Binomial[n,k-j]*Binomial[k-j,j]*(-2)^j, {j,0,k}]; %t A084612 Table[T[n, k], {n,0,12}, {k,0,2*n}]//Flatten (* _G. C. Greubel_, Mar 25 2023 *) %o A084612 (PARI) {T(n,k)=polcoeff((1+x-2*x^2)^n, k)} %o A084612 for(n=0,10,for(k=0,2*n,print1(T(n,k),", "));print("")) %o A084612 (Magma) %o A084612 A084612:= func< n,k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*(-2)^j: j in [0..k]]) >; %o A084612 [A084612(n,k): k in [0..2*n], n in [0..13]]; // _G. C. Greubel_, Mar 25 2023 %o A084612 (SageMath) %o A084612 def A084612(n,k): return sum(binomial(n,k-j)*binomial(k-j,j)*(-2)^j for j in range(k+1)) %o A084612 flatten([[A084612(n,k) for k in range(2*n+1)] for n in range(13)]) # _G. C. Greubel_, Mar 25 2023 %Y A084612 Cf. A000007, A001787, A002426, A084600 - A084611, A084613, A084614, A084615. %K A084612 sign,tabf %O A084612 0,4 %A A084612 _Paul D. Hanna_, Jun 01 2003