cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084634 Binomial transform of 1, 1, 1, 2, 2, 2, 2, 2, ...

This page as a plain text file.
%I A084634 #35 Mar 21 2023 07:14:23
%S A084634 1,2,4,9,21,48,106,227,475,978,1992,4029,8113,16292,32662,65415,
%T A084634 130935,261990,524116,1048385,2096941,4194072,8388354,16776939,
%U A084634 33554131,67108538,134217376,268435077,536870505,1073741388,2147483182,4294966799,8589934063
%N A084634 Binomial transform of 1, 1, 1, 2, 2, 2, 2, 2, ...
%C A084634 Partial sums of A000325.
%H A084634 Vincenzo Librandi, <a href="/A084634/b084634.txt">Table of n, a(n) for n = 0..1000</a>
%H A084634 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,-9,7,-2).
%F A084634 a(n) = 2^(n+1) - (n^2 + n + 2)/2.
%F A084634 a(n) = 1 + n + n*(n-1)/2 + 2*Sum_{k=3..n} C(n, k).
%F A084634 O.g.f.: (1-3*x+3*x^2)/((1-2*x)*(1-x)^3). - _R. J. Mathar_, Apr 07 2008
%F A084634 a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4). - _R. J. Mathar_, Apr 07 2008
%F A084634 a(n) = Sum_{i=0..n} (2^i - i). - _Ctibor O. Zizka_, Oct 15 2010
%F A084634 a(n) = A000225(n+1) - binomial(n+1,2). - _G. C. Greubel_, Mar 18 2023
%p A084634 A084634:=n->2^(n+1) - (n^2 +n +2)/2; seq(A084634(n), n=0..50); # _Wesley Ivan Hurt_, Jan 31 2014
%t A084634 LinearRecurrence[{5,-9,7,-2}, {1,2,4,9}, 50] (* _Vladimir Joseph Stephan Orlovsky_, Feb 19 2012 *)
%o A084634 (Sage) [2^(n+1)-1-binomial(n+1,2) for n in range(52)] # _Zerinvary Lajos_, May 29 2009
%o A084634 (Magma) [2^(n+1)-1-Binomial(n+1,2): n in [0..50]]; // _G. C. Greubel_, Mar 18 2023
%Y A084634 Cf. A000225, A000325,
%K A084634 nonn,easy
%O A084634 0,2
%A A084634 _Paul Barry_, Jun 06 2003