cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084684 Degrees of certain maps (see Comments and Formulas for more precise definitions).

This page as a plain text file.
%I A084684 #45 Sep 09 2023 10:09:55
%S A084684 1,2,4,8,13,20,28,38,49,62,76,92,109,128,148,170,193,218,244,272,301,
%T A084684 332,364,398,433,470,508,548,589,632,676,722,769,818,868,920,973,1028,
%U A084684 1084,1142,1201,1262,1324,1388,1453,1520,1588,1658,1729,1802,1876,1952,2029,2108,2188,2270,2353,2438,2524,2612,2701,2792,2884,2978,3073,3170,3268,3368,3469,3572
%N A084684 Degrees of certain maps (see Comments and Formulas for more precise definitions).
%C A084684 Number of binary strings of length n with no substrings equal to 0001, 1001, or 1011. - _R. H. Hardin_, Aug 14 2009
%C A084684 Degree sequence d(n) of recursion x(n+1)+x(n)+x(n-1) =  b + c(n)/x(n) where c(n) = c(n-1) + c(n-2) - c(n-3) and x(n) = u(n)/f(n) and x(n-1) = v(n)/f(n) in homogeneous coordinates (projectivization). Denoted by sigma_1 on page 32 of Hiertarinta and Viallet (2000). - _Michael Somos_, Jan 04 2022
%H A084684 Alois P. Heinz, <a href="/A084684/b084684.txt">Table of n, a(n) for n = 0..10000</a>
%H A084684 Jarmo Hietarinta and Claude Viallet, <a href="http://dx.doi.org/10.1016/S0960-0779(98)00266-5">Discrete Painlevé I and singularity confinement in projective space</a>, Chaos, Solitons and Fractals 11 (2000), pp. 29-32.
%H A084684 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).
%F A084684 a(n) = (6*n^2 + 9 - (-1)^n)/8. - _Charles R Greathouse IV_, Sep 10 2014
%F A084684 G.f.: ( 1+2*x^3 ) / ( (1+x)*(1-x)^3 ). - _R. J. Mathar_, Sep 11 2014
%F A084684 a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). - _Colin Barker_, Sep 11 2014
%F A084684 a(n) = a(-n) for all n in Z. - _Michael Somos_, Feb 08 2015
%F A084684 a(n) - a(n-1) = A001651(n), a(n+1) - a(n-1) = 3*n for all n in Z. - _Michael Somos_, Feb 08 2015
%F A084684 (a(n) - a(n+1))^2 - (2*a(n) + a(n+1)) + 4 = 3*n/2 + 1 for all even n in Z. - _Michael Somos_, Feb 08 2015
%F A084684 0 = -4 + a(n)*(-a(n+1) + a(n+2)) + a(n+1)*(+3 + a(n+1) - a(n+2)) for all n in Z. - _Michael Somos_, Feb 08 2015
%F A084684 A122958(n-1) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n for all n>1. - _Michael Somos_, Feb 08 2015
%F A084684 a(n) = 2*a(n-1) - 3*A002620(n-2) for all n in Z. - _Michael Somos_, Dec 27 2021
%F A084684 a(n) = 3*(a(n-1) + a(n-4)) - 2*(a(n-2) + a(n-3)) - a(n-5) for all n in Z. - _Michael Somos_, Jan 04 2022
%e A084684 G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 13*x^4 + 20*x^5 + 28*x^6 + 38*x^7 + ...
%t A084684 a[ n_] := Quotient[ 3*n^2 + 6, 4]; (* _Michael Somos_, Feb 08 2015 *)
%t A084684 LinearRecurrence[{2,0,-2,1},{1,2,4,8},70] (* _Harvey P. Dale_, Jul 21 2021 *)
%o A084684 (PARI) a(n)=(6*n^2 + 9 - (-1)^n)/8 \\ _Charles R Greathouse IV_, Sep 10 2014
%o A084684 (PARI) {a(n) = (n^2 + 2)*3 \ 4}; /* _Michael Somos_, Feb 08 2015 */
%Y A084684 Cf. A064863, A056107 (bisection), A077588 (bisection).
%Y A084684 Cf. also A001651, A002620, A122958.
%K A084684 nonn,easy
%O A084684 0,2
%A A084684 _N. J. A. Sloane_, Jul 16 2003
%E A084684 More terms from _Charles R Greathouse IV_, Sep 10 2014
%E A084684 Edited by _N. J. A. Sloane_, Jan 04 2022