A084687 Nontrivial numbers k containing no zero digits which are divisible by the number formed by writing the digits of k in ascending order.
9513, 81816, 93513, 94143, 95193, 816816, 888216, 933513, 934143, 935193, 941493, 951993, 2491578, 8166816, 8868216, 9333513, 9334143, 9335193, 9341493, 9351993, 9414993, 9519993, 24915798, 49827156, 81666816, 87127446, 88668216, 93333513
Offset: 1
Examples
9513/1359 = 7; 9876543192/1234567899 = 8; etc.
Links
- Robert Israel, Table of n, a(n) for n = 1..208
Crossrefs
Cf. A086083.
Programs
-
Maple
S:= [seq([i],i=1..9)]: R:= NULL: count:= 0: for d from 2 to 8 do S:= map(t -> seq([i,op(t)],i=1..t[1]), S); for s in S do x:= add(s[i]*10^(d-i),i=1..d); if x mod 3 <> 0 then next fi; for m from 2 to 10^(d+1)/x do if sort(convert(m*x,base,10))=s then count:= count+1; R:= R, m*x; fi od od od: sort([R]); # Robert Israel, Jul 09 2020
-
Mathematica
Select[ Range[ 10^8], IntegerQ[ # /FromDigits[ Sort[ IntegerDigits[ # ]]]] && # != FromDigits[ Sort[ IntegerDigits[ # ]]] && Count[ IntegerDigits[ # ], 0] == 0 & ]
Extensions
Edited by Robert G. Wilson v, Jul 07 2003
Comments