This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084754 #22 Apr 13 2024 19:38:42 %S A084754 2,3,5,5,7,11,5,7,11,13,7,11,13,17,19,7,11,13,17,19,23,11,13,17,19,23, %T A084754 29,31,11,13,17,19,23,29,31,37,11,13,17,19,23,29,31,37,41,11,13,17,19, %U A084754 23,29,31,37,41,43,13,17,19,23,29,31,37,41,43,47,53,13,17,19,23,29,31,37,41,43,47,53,59 %N A084754 Triangle read by rows: row n lists the first n primes greater than n. %H A084754 G. C. Greubel, <a href="/A084754/b084754.txt">Rows n = 1..100 of the triangle, flattened</a> %F A084754 From _G. C. Greubel_, May 13 2023: (Start) %F A084754 T(n, k) = prime(PrimePi(n) + k). %F A084754 T(n, 1) = A151800(n). %F A084754 T(n, 2) = A101300(n). (End) %e A084754 Triangle starts: %e A084754 2; %e A084754 3, 5; %e A084754 5, 7, 11; %e A084754 5, 7, 11, 13; %e A084754 7, 11, 13, 17, 19; %e A084754 7, 11, 13, 17, 19, 23; %e A084754 ... %t A084754 Table[Prime[PrimePi[n]+k], {n,16}, {k,n}]//Flatten (* _G. C. Greubel_, May 13 2023 *) %o A084754 (Magma) [NthPrime(#PrimesUpTo(n) + k): k in [1..n], n in [1..16]]; // _G. C. Greubel_, May 13 2023 %o A084754 (SageMath) %o A084754 def A084754(n,k): return nth_prime(prime_pi(n)+k) %o A084754 flatten([[A084754(n,k) for k in range(1,n+1)] for n in range(1,17)]) # _G. C. Greubel_, May 13 2023 %Y A084754 Cf. A000040, A000720, A101300, A151800. %K A084754 nonn,easy,tabl %O A084754 1,1 %A A084754 _Amarnath Murthy_ and _Jason Earls_, Jul 12 2003 %E A084754 Edited by _David Wasserman_, Jan 05 2005