This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084775 #15 Jun 04 2023 02:22:05 %S A084775 1,6,34,184,956,4776,22986,118304,624634,3281346,17687330,92606914, %T A084775 470392898,2348031430,11932314170,62345998488,326780375778, %U A084775 1691296908076,8780141027670,45168987187058,230213109996786 %N A084775 a(n) = sum of absolute valued coefficients of (1+x-4*x^2)^n. %H A084775 G. C. Greubel, <a href="/A084775/b084775.txt">Table of n, a(n) for n = 0..1000</a> %F A084775 a(n) = Sum_{k=0..2*n} abs(f(n, k)), where f(n, k) = ((sqrt(17) -1)/2)^k * Sum_{j=0..k} binomial(n, j)*binomial(n, k-j)*(-1)^j*((1+sqrt(17))/4 )^(2*j). - _G. C. Greubel_, Jun 03 2023 %t A084775 T[n_, k_]:=T[n,k]=SeriesCoefficient[Series[(1+x-2*x^2)^n,{x,0,2n}], k]; %t A084775 a[n_]:= a[n]= Sum[Abs[T[[k+1]]], {k,0,2n}]; %t A084775 Table[a[n], {n,0,40}] (* _G. C. Greubel_, Jun 03 2023 *) %o A084775 (PARI) for(n=0,40,S=sum(k=0,2*n,abs(polcoeff((1+1*x-4*x^2)^n,k,x))); print1(S",")) %o A084775 (Magma) %o A084775 R<x>:=PowerSeriesRing(Integers(), 100); %o A084775 f:= func< n,k | Coefficient(R!( (1+x-4*x^2)^n ), k) >; %o A084775 [(&+[ Abs(f(n,k)): k in [0..2*n]]): n in [0..40]]; // _G. C. Greubel_, Jun 03 2023 %o A084775 (SageMath) %o A084775 def f(n,k): %o A084775 P.<x> = PowerSeriesRing(QQ) %o A084775 return P( (1+x-4*x^2)^n ).list()[k] %o A084775 def a(n): return sum( abs(f(n,k)) for k in range(2*n+1) ) %o A084775 [a(n) for n in range(41)] # _G. C. Greubel_, Jun 03 2023 %Y A084775 Cf. A084776, A084777, A084778, A084779, A084780. %K A084775 nonn %O A084775 0,2 %A A084775 _Paul D. Hanna_, Jun 14 2003