This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084776 #14 Jun 04 2023 03:55:55 %S A084776 1,4,12,36,100,300,776,2412,6304,19036,50952,148896,393452,1211444, %T A084776 3167004,9672772,25295248,76084796,200590424,608621376,1617201648, %U A084776 4908511140,12658776540,38907904188,102775961200,310485090044 %N A084776 a(n) = sum of absolute-valued coefficients of (1+2*x-x^2)^n. %H A084776 G. C. Greubel, <a href="/A084776/b084776.txt">Table of n, a(n) for n = 0..1000</a> %F A084776 a(n) = Sum_{k=0..2*n} abs(f(n, k)), where f(n, k) = (sqrt(2) - 1)^k * Sum_{j=0..k} binomial(n, j)*binomial(n, k-j)*(-1)^j*(1+sqrt(2))^(2*j). - _G. C. Greubel_, Jun 03 2023 %t A084776 T[n_, k_]:=T[n,k]=SeriesCoefficient[Series[(1+2*x-x^2)^n,{x,0,2n}], k]; %t A084776 a[n_]:= a[n]= Sum[Abs[T[n,k]], {k,0,2n}]; %t A084776 Table[a[n], {n,0,40}] (* _G. C. Greubel_, Jun 03 2023 *) %o A084776 (PARI) for(n=0,40,S=sum(k=0,2*n,abs(polcoeff((1+2*x-x^2)^n,k,x))); print1(S",")) %o A084776 (Magma) %o A084776 m:=40; %o A084776 R<x>:=PowerSeriesRing(Integers(), 2*(m+2)); %o A084776 f:= func< n,k | Coefficient(R!( (1+2*x-x^2)^n ), k) >; %o A084776 [(&+[ Abs(f(n,k)): k in [0..2*n]]): n in [0..m]]; // _G. C. Greubel_, Jun 03 2023 %o A084776 (SageMath) %o A084776 def f(n,k): %o A084776 P.<x> = PowerSeriesRing(QQ) %o A084776 return P( (1+2*x-x^2)^n ).list()[k] %o A084776 def a(n): return sum( abs(f(n,k)) for k in range(2*n+1) ) %o A084776 [a(n) for n in range(41)] # _G. C. Greubel_, Jun 03 2023 %Y A084776 Cf. A084775, A084777, A084778, A084779, A084780. %K A084776 nonn %O A084776 0,2 %A A084776 _Paul D. Hanna_, Jun 14 2003