This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084777 #11 Jun 04 2023 02:22:08 %S A084777 1,5,17,73,273,881,3785,13081,48737,184321,632193,2526305,8854081, %T A084777 32077921,124093025,428178641,1638563969,5878561921,21469361537, %U A084777 82252171393,286863949025,1061000856417,3998983314849,14361380710817 %N A084777 a(n) = sum of absolute-valued coefficients of (1+2*x-2*x^2)^n. %H A084777 G. C. Greubel, <a href="/A084777/b084777.txt">Table of n, a(n) for n = 0..1000</a> %F A084777 a(n) = Sum_{k=0..2*n} abs(f(n, k)), where f(n, k) = ((sqrt(3) -1)/2)^k * Sum_{j=0..k} binomial(n, j)*binomial(n, k-j)*(-1)^j*((1+sqrt(3))/2 )^(2*j). - _G. C. Greubel_, Jun 03 2023 %t A084777 T[n_,k_]:=T[n,k]=SeriesCoefficient[Series[(1+2*x-2*x^2)^n,{x,0,2n}],k]; %t A084777 a[n_]:= a[n]= Sum[Abs[T[n,k]], {k,0,2n}]; %t A084777 Table[a[n], {n,0,40}] (* _G. C. Greubel_, Jun 03 2023 *) %o A084777 (PARI) for(n=0,40,S=sum(k=0,2*n,abs(polcoeff((1+2*x-2*x^2)^n,k,x))); print1(S",")) %o A084777 (Magma) %o A084777 m:=40; %o A084777 R<x>:=PowerSeriesRing(Integers(), 2*(m+2)); %o A084777 f:= func< n,k | Coefficient(R!( (1+2*x-2*x^2)^n ), k) >; %o A084777 [(&+[ Abs(f(n,k)): k in [0..2*n]]): n in [0..m]]; // _G. C. Greubel_, Jun 03 2023 %o A084777 (SageMath) %o A084777 def f(n,k): %o A084777 P.<x> = PowerSeriesRing(QQ) %o A084777 return P( (1+2*x-2*x^2)^n ).list()[k] %o A084777 def a(n): return sum( abs(f(n,k)) for k in range(2*n+1) ) %o A084777 [a(n) for n in range(41)] # _G. C. Greubel_, Jun 03 2023 %Y A084777 Cf. A084775, A084776, A084778, A084779, A084780. %K A084777 nonn %O A084777 0,2 %A A084777 _Paul D. Hanna_, Jun 14 2003