cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084786 Row sums of the triangle (A084783) and the differences of the main diagonal (A084785) and the first column (A084784).

This page as a plain text file.
%I A084786 #16 Jun 09 2023 18:03:44
%S A084786 1,3,10,41,211,1354,10620,99327,1081744,13443065,187538132,2899087774,
%T A084786 49149083790,906169148064,18044322039456,385825735367745,
%U A084786 8814867042465387,214270073007359704,5520898403200292418,150290771692227728963,4309813692713979537503
%N A084786 Row sums of the triangle (A084783) and the differences of the main diagonal (A084785) and the first column (A084784).
%C A084786 In the triangle (A084783), the diagonal (A084785) is the self-convolution of the first column (A084784) and the row sums (this sequence) gives the differences of the diagonal and the first column.
%H A084786 Vaclav Kotesovec, <a href="/A084786/b084786.txt">Table of n, a(n) for n = 0..400</a>
%F A084786 a(n) ~ n! / (2 * (log(2))^(n+2)). - _Vaclav Kotesovec_, Nov 19 2014
%t A084786 A084784= With[{m=60}, CoefficientList[Series[Exp[Sum[Sum[ j!*StirlingS2[k, j], {j, k}]*x^k /k , {k, m + 1}]], {x,0,m}], x]];
%t A084786 T[n_, k_]:= T[n, k]= If[k==0, A084784[[n+1]], T[n, k-1] + T[n-1, k-1]]; (* A084783 *)
%t A084786 A084786[n_]:= A084786[n]= Sum[T[n, k], {k,0,n}];
%t A084786 Table[A084786[n], {n,0,40}] (* _G. C. Greubel_, Jun 08 2023 *)
%o A084786 (PARI) A = matrix(25, 25); A[1, 1] = 1; rs = 1; print(1); for (n = 2, 25, sc = sum (i = 2, n - 1, A[i, 1]*A[n + 1 - i, 1]); A[n, 1] = rs - sc; rs = A[n, 1]; for (k = 2, n, A[n, k] = A[n, k - 1] + A[n - 1, k - 1]; rs += A[n, k]); print(rs)); \\ _David Wasserman_, Jan 06 2005
%o A084786 (SageMath)
%o A084786 def f(n, x): return exp(sum(sum( factorial(j)*stirling_number2(k,j) *x^k/k for j in range(1,k+1)) for k in range(1,n+2)))
%o A084786 m=50
%o A084786 def A084784_list(prec):
%o A084786     P.<x> = PowerSeriesRing(QQ, prec)
%o A084786     return P( f(m,x) ).list()
%o A084786 b=A084784_list(m)
%o A084786 @CachedFunction
%o A084786 def T(n,k): # T = A084783
%o A084786     if k==0: return b[n]
%o A084786     else: return T(n, k-1) + T(n-1, k-1)
%o A084786 def A084786(n): return sum(T(n, k) for k in range(n+1))
%o A084786 [A084786(n) for n in range(m-9)] # _G. C. Greubel_, Jun 08 2023
%Y A084786 Cf. A084783, A084784, A084785.
%K A084786 nonn
%O A084786 0,2
%A A084786 _Paul D. Hanna_, Jun 13 2003
%E A084786 More terms from _David Wasserman_, Jan 06 2005