cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084868 Main diagonal of symmetric square table A084867, in which the antidiagonal sums (A006012) form the first row shifted left.

This page as a plain text file.
%I A084868 #37 Dec 25 2017 04:00:50
%S A084868 1,2,8,36,168,796,3800,18216,87536,421292,2029592,9784088,47187536,
%T A084868 227651352,1098523504,5301727824,25590307552,123529362124,
%U A084868 596337248024,2878947861432,13899229883024,67105641925064,323993230750672
%N A084868 Main diagonal of symmetric square table A084867, in which the antidiagonal sums (A006012) form the first row shifted left.
%C A084868 The Hankel transform (see A001906 for definition) of this sequence is A000302 (powers of 4): 1, 4, 16, 64, 256, 1024, ... - _Philippe Deléham_, Aug 17 2005
%H A084868 Vincenzo Librandi, <a href="/A084868/b084868.txt">Table of n, a(n) for n = 0..200</a>
%H A084868 Vincent Pilaud, V Pons, <a href="http://arxiv.org/abs/1606.09643">Permutrees</a>, arXiv preprint arXiv:1606.09643, 2016
%F A084868 Differential equation: (16*x^3 + 12*x^2 - 8*x + 1) * x*(d/dx)A(x) + (8x^3 - 12*x^2 + 6*x - 1) * A(x) + (8x^2 - 6*x + 1) = 0.
%F A084868 G.f.: ((1 - 4*x) + 2*x * sqrt(1 - 4*x)) / (1 - 4*x - 4*x^2). a(n) * (n-1) = a(n-1) * (8*n - 14) - a(n-2) * 12*(n-3) - a(n-3) * 8*(2*n - 5), n > 2. Hankel number wall zig-zag diagonal is A011782. - _Michael Somos_, Sep 14 2003
%F A084868 INVERT transform of A028329 (offset 1). - _Michael Somos_, Jan 05 2012
%F A084868 G.f.: (1-2*x*f(x))/(1-2*x*f(x)-2*x) where f(x) is the g.f. of A000108 (Catalan numbers). - _Philippe Deléham_, Jan 30 2012
%F A084868 a(n) ~ (1-1/sqrt(2))*(2+2*sqrt(2))^n. - _Vaclav Kotesovec_, Oct 14 2012
%F A084868 From _Peter Bala_, Feb 05 2017: (Start)
%F A084868 G.f: sqrt(1 - 4*x)/(sqrt(1 - 4*x) - 2*x) =  1/(1 - 2*x/(1 - 2*x/(1 - x/(1 - x/(1 - x/(1 - ...)))))) (continued fraction).  Cf. A026671, A081696.
%F A084868 Catalan transform of A006012, that is, equals A106566*A006012, as noted by _R. J. Mathar_. (End)
%e A084868 1 + 2*x + 8*x^2 + 36*x^3 + 168*x^4 + 796*x^5 + 3800*x^6 + 18216*x^7 + ...
%p A084868 1/(1-x/(sqrt(1/4-x))): series(%,x,23): seq(coeff(%,x,n),n=0..22); # _Peter Luschny_, Feb 06 2017
%t A084868 Table[SeriesCoefficient[((1-4*x)+2*x*Sqrt[1-4*x])/(1-4*x-4*x^2),{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 14 2012 *)
%o A084868 (PARI) {a(n) = if( n<0, 0, polcoeff((1 - 4*x + 2*x * sqrt(1 - 4*x + x * O(x^n))) /(1 - 4*x - 4*x^2), n))} /* _Michael Somos_, Jan 05 2012 */
%Y A084868 Cf. A006012, A011782, A028329, A084867, A026671, A081696.
%K A084868 nonn,easy
%O A084868 0,2
%A A084868 _Paul D. Hanna_, Jun 10 2003, Jun 11 2003