cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084882 Number of (k,m,n)-multiantichains of multisets with k=3 and m=5.

This page as a plain text file.
%I A084882 #15 Oct 08 2017 17:50:29
%S A084882 1,3,51,4129,1439381,814788851,395927618035,155157302244381,
%T A084882 51960586962031617,15663181302847575559,4402571746033946222639,
%U A084882 1180812802393866826858193,306839347397532891662028733
%N A084882 Number of (k,m,n)-multiantichains of multisets with k=3 and m=5.
%C A084882 By a (k,m,n)-multiantichain of multisets we mean an m-multiantichain of k-bounded multisets on an n-set. The elements of a multiantichain could have the multiplicities greater than 1. A multiset is called k-bounded if every its element has the multiplicity not greater than k-1.
%H A084882 G. C. Greubel, <a href="/A084882/b084882.txt">Table of n, a(n) for n = 0..415</a>
%H A084882 Goran Kilibarda and Vladeta Jovovic, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Kilibarda/kili2.html">Antichains of Multisets</a>, J. Integer Seqs., Vol. 7, 2004.
%F A084882 a(n) = (1/5!)*(243^n - 20*162^n + 60*126^n + 20*108^n + 10*98^n - 120*93^n - 120*84^n + 30*81^n + 30*78^n + 120*77^n + 120*70^n - 120*63^n + 20*56^n - 360*54^n + 720*42^n + 120*36^n - 720*31^n + 275*27^n + 180*26^n - 1650*18^n + 1650*14^n + 870*9^n - 1740*6^n + 744*3^n).
%t A084882 Table[(1/5!)*(243^n - 20*162^n + 60*126^n + 20*108^n + 10*98^n - 120*93^n - 120*84^n + 30*81^n + 30*78^n + 120*77^n + 120*70^n - 120*63^n + 20*56^n - 360*54^n + 720*42^n + 120*36^n - 720*31^n + 275*27^n + 180*26^n - 1650*18^n + 1650*14^n + 870*9^n - 1740*6^n + 744*3^n), {n, 0, 50}] (* _G. C. Greubel_, Oct 08 2017 *)
%Y A084882 Cf. A016269, A047707, A051112-A051118, A084869-A084883.
%K A084882 nonn
%O A084882 0,2
%A A084882 Goran Kilibarda, _Vladeta Jovovic_, Jun 10 2003