This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A084891 #23 Feb 16 2025 08:32:49 %S A084891 22,26,33,34,38,39,44,46,51,52,55,57,58,62,65,66,68,69,74,76,77,78,82, %T A084891 85,86,87,88,91,92,93,94,95,99,102,104,106,110,111,114,115,116,117, %U A084891 118,119,122,123,124,129,130,132,133,134,136,138,141,142,145,146 %N A084891 Multiples of 2, 3, 5, or 7, but not 7-smooth. %C A084891 Intersection of A068191 with (A005843, A008585, A008587 and A008589); union of (A005843, A008585, A008587 and A008589) without A002473. %C A084891 A020639(a(n)) <= 7, A006530(a(n)) > 7. %H A084891 Michael De Vlieger, <a href="/A084891/b084891.txt">Table of n, a(n) for n = 1..10000</a> %H A084891 Michael De Vlieger, <a href="/A084891/a084891.png">Diagram showing numbers k in this sequence</a> instead as k mod 210, in black, else white if k is coprime to 210, purple if k = 1, red if k | 210, and gold if rad(k) | 210, magnification 5X. %H A084891 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SmoothNumber.html">Smooth Number</a>. %t A084891 okQ[n_] := AnyTrue[{2, 3, 5, 7}, Divisible[n, #]&] && FactorInteger[n][[-1, 1]] > 7; %t A084891 Select[Range[1000], okQ] (* _Jean-François Alcover_, Oct 15 2021 *) %o A084891 (PARI) mult2357(m,n) = \\ mult 2,3,5,7 not 7 smooth %o A084891 { %o A084891 local(x,a,j,f,ln); %o A084891 for(x=m,n, %o A084891 f=0; %o A084891 if(gcd(x,210)>1, %o A084891 a = ifactor(x); %o A084891 for(j=1,length(a), %o A084891 if(a[j]>7,f=1;break); %o A084891 ); %o A084891 if(f,print1(x",")); %o A084891 ); %o A084891 ); %o A084891 } %o A084891 ifactor(n) = \\ The vector of the prime factors of n with multiplicity. %o A084891 { %o A084891 local(f,j,k,flist); %o A084891 flist=[]; %o A084891 f=Vec(factor(n)); %o A084891 for(j=1,length(f[1]), %o A084891 for(k = 1,f[2][j],flist = concat(flist,f[1][j]) %o A084891 ); %o A084891 ); %o A084891 return(flist) %o A084891 } %o A084891 \\ _Cino Hilliard_, Jul 03 2009 %o A084891 (Python) %o A084891 from sympy import primefactors %o A084891 def ok(n): %o A084891 pf = set(primefactors(n)) %o A084891 return pf & {2, 3, 5, 7} and pf - {2, 3, 5, 7} %o A084891 print(list(filter(ok, range(147)))) # _Michael S. Branicky_, Oct 15 2021 %Y A084891 Cf. A002473, A005843, A006530, A008585, A008587, A008589, A020639, A068191, A080672. %K A084891 nonn %O A084891 1,1 %A A084891 _Reinhard Zumkeller_, Jul 13 2003