cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084937 Smallest number which is coprime to the last two predecessors and has not yet appeared; a(1)=1, a(2)=2.

This page as a plain text file.
%I A084937 #105 Jun 28 2025 10:57:07
%S A084937 1,2,3,5,4,7,9,8,11,13,6,17,19,10,21,23,16,15,29,14,25,27,22,31,35,12,
%T A084937 37,41,18,43,47,20,33,49,26,45,53,28,39,55,32,51,59,38,61,63,34,65,57,
%U A084937 44,67,69,40,71,73,24,77,79,30,83,89,36,85,91,46,75,97,52,81
%N A084937 Smallest number which is coprime to the last two predecessors and has not yet appeared; a(1)=1, a(2)=2.
%C A084937 Equivalently, this is the lexicographically earliest sequence of positive numbers satisfying the condition that each term is relatively prime to the next two terms. - _N. J. A. Sloane_, Nov 03 2014
%C A084937 Empirically, the points lie roughly on two lines: if n == 2 mod 3 then a(n) ~= 2n/3, otherwise a(n) ~= 4n/3. See A249680-A249683 for the three trisections, and see also the Sigrist scatterplot. - _N. J. A. Sloane_, Nov 03 2014, Nov 04 2014
%C A084937 All primes and prime powers occur, and the primes occur in their natural order. For any prime p, p occurs before p^2 before p^3, ...
%C A084937 Empirically, this is a permutation of the natural numbers, with inverse A084933: a(A084933(n))=A084933(a(n))=n. It seems that there are no further fixed points after {1,2,3,8,33,39}. Empirically, a(n) mod 2 = A011655(n+1); ABS(a(n)-n) < n; a(3*n+1)>n; a(3*n+2)<n. - _Reinhard Zumkeller_, Dec 16 2007
%C A084937 For a(n) mod 3 see A249603. - _N. J. A. Sloane_, Nov 03 2014
%C A084937 A249694(n) = GCD(a(n),a(n+3)). - _Reinhard Zumkeller_, Nov 04 2014
%H A084937 Reinhard Zumkeller, <a href="/A084937/b084937.txt">Table of n, a(n) for n = 1..100000</a>
%H A084937 John P. Linderman, <a href="/A084937/a084937.txt">Table of n, a(n) for n = 1..764179</a> (about 10MB)
%H A084937 Rémy Sigrist, <a href="/A084937/a084937.png">Scatterplot of the first 2500 terms</a>
%H A084937 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%p A084937 N:= 1000: # to get a(n) until the first entry > N
%p A084937 a[1]:= 1: a[2]:= 2:
%p A084937 R:= {$3..N}:
%p A084937 for n from 3 while R <> {} do
%p A084937   success:= false;
%p A084937   for r in R do
%p A084937     if igcd(r,a[n-1]) = 1 and igcd(r,a[n-2])=1 then
%p A084937        a[n]:= r;
%p A084937        R:= R minus {r};
%p A084937        success:= true;
%p A084937        break
%p A084937     fi
%p A084937   od:
%p A084937   if not success then break fi;
%p A084937 od:
%p A084937 seq(a[i], i = 1 .. n-1); # _Robert Israel_, Dec 12 2014
%t A084937 lst={1,2,3}; unused=Range[4,100]; While[n=Select[unused, CoprimeQ[#, lst[[-1]]] && CoprimeQ[#, lst[[-2]]] &, 1]; n != {}, AppendTo[lst, n[[1]]]; unused=DeleteCases[unused, n[[1]]]]; lst
%t A084937 f[s_] := Block[{k = 1, l = Take[s, -2]}, While[ Union[ GCD[k, l]] != {1} || MemberQ[s, k], k++]; Append[s, k]]; Nest[f, {1, 2}, 67] (* _Robert G. Wilson v_, Jun 26 2011 *)
%o A084937 (Haskell)
%o A084937 import Data.List (delete)
%o A084937 a084937 n = a084937_list !! (n-1)
%o A084937 a084937_list = 1 : 2 : f 2 1 [3..] where
%o A084937    f x y zs = g zs where
%o A084937       g (u:us) | gcd y u > 1 || gcd x u > 1 = g us
%o A084937                | otherwise = u : f u x (delete u zs)
%o A084937 -- _Reinhard Zumkeller_, Jan 28 2012
%o A084937 (Python)
%o A084937 from math import gcd
%o A084937 A084937_list, l1, l2, s, b = [1,2], 2, 1, 3, set()
%o A084937 for _ in range(10**3):
%o A084937     i = s
%o A084937     while True:
%o A084937         if not i in b and gcd(i,l1) == 1 and gcd(i,l2) == 1:
%o A084937             A084937_list.append(i)
%o A084937             l2, l1 = l1, i
%o A084937             b.add(i)
%o A084937             while s in b:
%o A084937                 b.remove(s)
%o A084937                 s += 1
%o A084937             break
%o A084937         i += 1 # _Chai Wah Wu_, Dec 09 2014
%o A084937 (PARI) taken(k,t=v[k])=for(i=3,k-1, if(v[i]==t, return(1))); 0
%o A084937 step(k,g)=while(gcd(k,g)>1, k++); k
%o A084937 first(n)=local(v=vector(n,i,i)); my(nxt=3,t); for(k=3,n, v[k]=step(nxt, t=v[k-1]*v[k-2]); while(taken(k), v[k]=step(v[k]+1,t)); if(v[k]==t, while(taken(k+1,t++),))); v \\ _Charles R Greathouse IV_, Aug 26 2016
%Y A084937 Cf. A084933 (inverse), A103683, A121216, A247665, A090252, A249603 (read mod 3), A249680, A249681, A249682, A249683 (trisections), A249694, A011655, A249684 (numbers that take a record number of steps to appear), A249685.
%Y A084937 Indices of primes: A249602, and of prime powers: A249575.
%Y A084937 Running counts of missing numbers: A249686, A250099, A250100; A249777, A249856, A249857.
%Y A084937 Where a(3n)>a(3n+1): A249689.
%Y A084937 See also A353706, A353709, A353710.
%K A084937 nonn,look
%O A084937 1,2
%A A084937 _Reinhard Zumkeller_, Jun 13 2003
%E A084937 Entry revised by _N. J. A. Sloane_, Nov 04 2014