A084942 Enneagorials: n-th polygorial for k=9.
1, 1, 9, 216, 9936, 745200, 82717200, 12738448800, 2598643555200, 678245967907200, 220429939569840000, 87290256069656640000, 41375581377017247360000, 23128949989752641274240000, 15056946443328969469530240000, 11292709832496727102147680000000, 9666559616617198399438414080000000
Offset: 0
Links
- Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.
Crossrefs
Programs
-
Maple
a := n->n!/2^n*product(7*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
Mathematica
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[9, #] &, 16, 0] (* Robert G. Wilson v, Dec 26 2016 *)
-
PARI
a(n)=n!/2^n*prod(i=1,n,7*i-5) \\ Charles R Greathouse IV, Dec 13 2016
Formula
a(n) = polygorial(n, 9) = (A000142(n)/A000079(n))*A084947(n) = (n!/2^n)*Product_{i=0..n-1} (7*i+2) = (n!/2^n)*7^n*Pochhammer(2/7, n) = (n!/2^n)*7^n*Gamma(n+2/7)/Gamma(2/7).
D-finite with recurrence 2*a(n) = n*(7*n-5)*a(n-1). - R. J. Mathar, Mar 12 2019
a(n) ~ 7^n * n^(2*n + 2/7) * Pi /(Gamma(2/7) * 2^(n-1) * exp(2*n)). - Amiram Eldar, Aug 28 2025