A084943 Decagorials: n-th polygorial for k=10.
1, 1, 10, 270, 14040, 1193400, 150368400, 26314470000, 6104957040000, 1813172240880000, 670873729125600000, 302564051835645600000, 163384587991248624000000, 104075982550425373488000000, 77224379052415627128096000000, 66026844089815361194522080000000, 64442199831659792525853550080000000
Offset: 0
Links
- Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.
Crossrefs
Programs
-
Maple
a := n->n!/2^n*product(8*i+2,i=0..n-1); [seq(a(j),j=0..30)];
-
Mathematica
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[10, #] &, 14, 0] (* Robert G. Wilson v, Dec 26 2016 *)
-
PARI
a(n)=n!/2^n*prod(i=1,n,8*i-6) \\ Charles R Greathouse IV, Dec 13 2016
Formula
a(n) = polygorial(n, 10) = (A000142(n)/A000079(n))*A084948(n) = (n!/2^n)*Product_{i=0..n-1} (8*i+2) = (n!/2^n)*8^n*Pochhammer(1/4, n) = (n!/2)*4^n*Gamma(n+1/4)*sqrt(2)*Gamma(3/4)/Pi.
a(n) = Product_{k=1..n} k*(4k-3). - Daniel Suteu, Nov 01 2017
D-finite with recurrence a(n) -n*(4*n-3)*a(n-1)=0. - R. J. Mathar, May 02 2022
a(n) ~ 2^(2*n+1) * n^(2*n + 1/4) * Pi /(Gamma(1/4) * exp(2*n)). - Amiram Eldar, Aug 28 2025