cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084974 Primes that show the slow decrease in the larger values of the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.

This page as a plain text file.
%I A084974 #21 Feb 16 2025 08:32:50
%S A084974 7,113,1327,1669,2477,2971,3271,4297,4831,5591,31397,34061,43331,
%T A084974 44293,58831,155921,370261,492113,604073,1357201,1561919,2010733,
%U A084974 2127163,2238823,4652353,6034247,7230331,8421251,8917523,11113933,20831323
%N A084974 Primes that show the slow decrease in the larger values of the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.
%C A084974 a(n) are the primes p(k) such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.
%D A084974 R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.
%D A084974 P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.
%H A084974 H. J. Smith, <a href="/A084974/b084974.txt">Table of n, a(n) for n = 1..128</a>
%H A084974 H. J. Smith, <a href="https://www.oocities.org/hjsmithh/PrimeSR/index.html">Andrica's Conjecture</a>
%H A084974 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AndricasConjecture.html">Andrica's Conjecture</a>.
%e A084974 a(3)=1327 because p(217)=1327, p(218)=1361 and Af(217) = sqrt(1361) - sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.
%Y A084974 Cf. A078693, A079098, A079296, A084975, A084976, A084977.
%K A084974 nonn
%O A084974 1,1
%A A084974 _Harry J. Smith_, Jun 16 2003