cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084975 Primes that show the slow decrease in the larger values of the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.

This page as a plain text file.
%I A084975 #18 Feb 16 2025 08:32:50
%S A084975 11,127,1361,1693,2503,2999,3299,4327,4861,5623,31469,34123,43391,
%T A084975 44351,58889,156007,370373,492227,604171,1357333,1562051,2010881,
%U A084975 2127269,2238931,4652507,6034393,7230479,8421403,8917663,11114087,20831533
%N A084975 Primes that show the slow decrease in the larger values of the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.
%C A084975 a(n) are the primes p(k+1) such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.
%D A084975 R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.
%D A084975 P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.
%H A084975 H. J. Smith, <a href="/A084975/b084975.txt">Table of n, a(n) for n=1..128</a>
%H A084975 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AndricasConjecture.html">Andrica's Conjecture</a>
%H A084975 H. J. Smith, <a href="http://harry-j-smith-memorial.com/PrimeSR/">Andrica's Conjecture</a>
%e A084975 a(3)=1361 because p(218)=1361, p(217)=1327 and Af(217) = sqrt(1361) - sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.
%Y A084975 Cf. A078693, A079098, A079296, A084974, A084976, A084977.
%K A084975 nonn
%O A084975 1,1
%A A084975 _Harry J. Smith_, Jun 16 2003