cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084977 Values that show the slow decrease in the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.

This page as a plain text file.
%I A084977 #16 Feb 16 2025 08:32:50
%S A084977 670873,639281,463722,292684,260522,256245,244265,228429,215476,
%T A084977 213675,203053,167894,144069,137748,119533,108882,92024,81248,63042,
%U A084977 56651,52808,52185,36338,36089,35698,29717,27520,26189,23440,23096,23005
%N A084977 Values that show the slow decrease in the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.
%C A084977 a(n) = floor(1000000*Af(k)) with k such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.
%D A084977 R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.
%D A084977 P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.
%H A084977 H. J. Smith, <a href="/A084977/b084977.txt">Table of n, a(n) for n = 1..128</a>
%H A084977 H. J. Smith, <a href="http://harry-j-smith-memorial.com/PrimeSR/">Andrica's Conjecture</a>
%H A084977 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AndricasConjecture.html">Andrica's Conjecture.</a>
%e A084977 a(3)=46372 because p(217)=1327, p(218)=1361 and Af(217) = sqrt(1361)- sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.
%Y A084977 Cf. A078693, A079098, A079296, A084974, A084975, A084976.
%K A084977 nonn
%O A084977 1,1
%A A084977 _Harry J. Smith_, Jun 16 2003