A084979 Palindromes such that the product of the digits + 1 is prime.
1, 2, 4, 6, 11, 22, 44, 66, 111, 121, 141, 161, 212, 232, 242, 272, 292, 323, 343, 383, 414, 464, 474, 545, 565, 616, 626, 636, 656, 747, 838, 848, 878, 898, 929, 969, 1111, 1221, 1441, 1661, 2112, 2222, 2332, 2552, 2772, 2882, 3223, 3883, 4114, 4444, 4554
Offset: 1
Examples
383 is a term since 3*8*3 = 72, 72+1 = 73 is prime.
Links
- J.W.L. (Jan) Eerland, Table of n, a(n) for n = 1..10928
Crossrefs
Cf. A081988.
Programs
-
Mathematica
Select[ Range[4663], FromDigits[ Reverse[ IntegerDigits[ # ]]] == # && PrimeQ[1 + Times @@ IntegerDigits[ # ]] & ] Parallelize[While[True,If[PalindromeQ[n]&&PrimeQ[1+Product[Part[IntegerDigits[n],k],{k,1,Length[IntegerDigits[n]]}]],Print[n]];n++];n] (* J.W.L. (Jan) Eerland, Dec 27 2021 *)
-
Python
from math import prod from sympy import isprime from itertools import count, islice, product def cond(n): return isprime(prod(map(int, str(n))) + 1) def pals(): # generator of palindromes as strings digits = "0123456789" for d in count(1): for p in product(digits, repeat=d//2): if d > 1 and p[0] == "0": continue left = "".join(p); right = left[::-1] for mid in [[""], digits][d%2]: yield int(left + mid + right) def agen(): yield from filter(cond, pals()) print(list(islice(agen(), 51))) # Michael S. Branicky, Aug 22 2022
Formula
a(n) >> n^k, where k = log_3(10) = 2.0959.... - Charles R Greathouse IV, Aug 02 2010
Extensions
Edited, corrected and extended by Robert G. Wilson v, Jun 21 2003
Formula by Charles R Greathouse IV, Aug 02 2010