This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085060 #29 Feb 26 2025 11:37:04 %S A085060 3,12,12,39,21,39,30,120,39,66,48,120,57,93,66,363,75,120,84,201,93, %T A085060 147,102,363,111,174,120,282,129,201,138,1092,147,228,156,363,165,255, %U A085060 174,606,183,282,192,444,201,309,210,1092,219,336,228,525,237,363,246,849,255,390 %N A085060 Integer reached in A085058. %H A085060 Ruud H.G. van Tol, <a href="/A085060/b085060.txt">Table of n, a(n) for n = 0..10000</a> %H A085060 J. C. Lagarias and N. J. A. Sloane, Approximate squaring (<a href="http://neilsloane.com/doc/apsq.pdf">pdf</a>, <a href="http://neilsloane.com/doc/apsq.ps">ps</a>), Experimental Math., 13 (2004), 113-128. %F A085060 n << a(n) << n^1.6. (The actual upper exponent is log(3)/log(2) = 1.5849625....) - _Charles R Greathouse IV_, Aug 29 2024 %F A085060 From _Ruud H.G. van Tol_, Aug 31 2024: (Start) %F A085060 a(2*n) = 9*n + 3. %F A085060 a(2*n+1) = 3*a(n) + 3. %F A085060 a(n) = (3/2)^A085058(n) * (2*n+2) - 3/2. (End) %o A085060 (PARI) a(n) = (3/2)^valuation(2*n+2, 2)*(3*n+3)-3/2; \\ _Ruud H.G. van Tol_, Aug 29 2024 %o A085060 (Python) %o A085060 def A085060(n): return (3*(k:=n+1)*3**(m:=(-k&k).bit_length())>>m)-1 # _Chai Wah Wu_, Feb 26 2025 %Y A085060 Cf. A085058, A085062. %K A085060 nonn,easy %O A085060 0,1 %A A085060 _N. J. A. Sloane_, Aug 11 2003