cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085126 Multiples of 3 which are members of A002473. Or multiples of 3 with the largest prime divisor < 10.

This page as a plain text file.
%I A085126 #27 Sep 23 2024 08:10:54
%S A085126 3,6,9,12,15,18,21,24,27,30,36,42,45,48,54,60,63,72,75,81,84,90,96,
%T A085126 105,108,120,126,135,144,147,150,162,168,180,189,192,210,216,225,240,
%U A085126 243,252,270,288,294,300,315,324,336,360,375,378,384,405,420,432,441,450
%N A085126 Multiples of 3 which are members of A002473. Or multiples of 3 with the largest prime divisor < 10.
%H A085126 Michael S. Branicky, <a href="/A085126/b085126.txt">Table of n, a(n) for n = 1..10001</a> (first 1001 terms from Harvey P. Dale)
%F A085126 a(n) = 3*A002473(n). - _Chai Wah Wu_, Sep 18 2024
%F A085126 Sum_{n>=1} 1/a(n) = 35/24. - _Amiram Eldar_, Sep 23 2024
%t A085126 Select[3*Range[200],FactorInteger[#][[-1,1]]<10&] (* _Harvey P. Dale_, Apr 10 2019 *)
%o A085126 (Python)
%o A085126 from sympy import integer_log
%o A085126 def A085126(n):
%o A085126     def bisection(f,kmin=0,kmax=1):
%o A085126         while f(kmax) > kmax: kmax <<= 1
%o A085126         while kmax-kmin > 1:
%o A085126             kmid = kmax+kmin>>1
%o A085126             if f(kmid) <= kmid:
%o A085126                 kmax = kmid
%o A085126             else:
%o A085126                 kmin = kmid
%o A085126         return kmax
%o A085126     def f(x):
%o A085126         c = n+x
%o A085126         for i in range(integer_log(x,7)[0]+1):
%o A085126             for j in range(integer_log(m:=x//7**i,5)[0]+1):
%o A085126                 for k in range(integer_log(r:=m//5**j,3)[0]+1):
%o A085126                     c -= (r//3**k).bit_length()
%o A085126         return c
%o A085126     return bisection(f,n,n)*3 # _Chai Wah Wu_, Sep 17 2024
%o A085126 (Python) # faster for initial segment of sequence
%o A085126 import heapq
%o A085126 from itertools import islice
%o A085126 def A085126gen(): # generator of terms
%o A085126     v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5, 7]
%o A085126     while True:
%o A085126         v = heapq.heappop(h)
%o A085126         if v != oldv:
%o A085126             yield 3*v
%o A085126             oldv = v
%o A085126             for p in psmooth_primes:
%o A085126                     heapq.heappush(h, v*p)
%o A085126 print(list(islice(A085126gen(), 65))) # _Michael S. Branicky_, Sep 17 2024
%Y A085126 Intersection of A008585 and A002473.
%Y A085126 Cf. A085125, A085127, A085128, A085129, A080194, A085131, A085132.
%K A085126 easy,nonn
%O A085126 1,1
%A A085126 _Amarnath Murthy_, Jul 06 2003
%E A085126 More terms from _David Wasserman_, Jan 28 2005
%E A085126 Offset changed to 1 by _Michael S. Branicky_, Sep 17 2024