This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085126 #27 Sep 23 2024 08:10:54 %S A085126 3,6,9,12,15,18,21,24,27,30,36,42,45,48,54,60,63,72,75,81,84,90,96, %T A085126 105,108,120,126,135,144,147,150,162,168,180,189,192,210,216,225,240, %U A085126 243,252,270,288,294,300,315,324,336,360,375,378,384,405,420,432,441,450 %N A085126 Multiples of 3 which are members of A002473. Or multiples of 3 with the largest prime divisor < 10. %H A085126 Michael S. Branicky, <a href="/A085126/b085126.txt">Table of n, a(n) for n = 1..10001</a> (first 1001 terms from Harvey P. Dale) %F A085126 a(n) = 3*A002473(n). - _Chai Wah Wu_, Sep 18 2024 %F A085126 Sum_{n>=1} 1/a(n) = 35/24. - _Amiram Eldar_, Sep 23 2024 %t A085126 Select[3*Range[200],FactorInteger[#][[-1,1]]<10&] (* _Harvey P. Dale_, Apr 10 2019 *) %o A085126 (Python) %o A085126 from sympy import integer_log %o A085126 def A085126(n): %o A085126 def bisection(f,kmin=0,kmax=1): %o A085126 while f(kmax) > kmax: kmax <<= 1 %o A085126 while kmax-kmin > 1: %o A085126 kmid = kmax+kmin>>1 %o A085126 if f(kmid) <= kmid: %o A085126 kmax = kmid %o A085126 else: %o A085126 kmin = kmid %o A085126 return kmax %o A085126 def f(x): %o A085126 c = n+x %o A085126 for i in range(integer_log(x,7)[0]+1): %o A085126 for j in range(integer_log(m:=x//7**i,5)[0]+1): %o A085126 for k in range(integer_log(r:=m//5**j,3)[0]+1): %o A085126 c -= (r//3**k).bit_length() %o A085126 return c %o A085126 return bisection(f,n,n)*3 # _Chai Wah Wu_, Sep 17 2024 %o A085126 (Python) # faster for initial segment of sequence %o A085126 import heapq %o A085126 from itertools import islice %o A085126 def A085126gen(): # generator of terms %o A085126 v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5, 7] %o A085126 while True: %o A085126 v = heapq.heappop(h) %o A085126 if v != oldv: %o A085126 yield 3*v %o A085126 oldv = v %o A085126 for p in psmooth_primes: %o A085126 heapq.heappush(h, v*p) %o A085126 print(list(islice(A085126gen(), 65))) # _Michael S. Branicky_, Sep 17 2024 %Y A085126 Intersection of A008585 and A002473. %Y A085126 Cf. A085125, A085127, A085128, A085129, A080194, A085131, A085132. %K A085126 easy,nonn %O A085126 1,1 %A A085126 _Amarnath Murthy_, Jul 06 2003 %E A085126 More terms from _David Wasserman_, Jan 28 2005 %E A085126 Offset changed to 1 by _Michael S. Branicky_, Sep 17 2024