cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085151 Numbers generated by the Fibonacci polynomial x^4 + 3x^2 + 1.

Original entry on oeis.org

5, 29, 109, 305, 701, 1405, 2549, 4289, 6805, 10301, 15005, 21169, 29069, 39005, 51301, 66305, 84389, 105949, 131405, 161201, 195805, 235709, 281429, 333505, 392501, 459005, 533629, 617009, 709805, 812701, 926405, 1051649, 1189189
Offset: 1

Views

Author

Gary W. Adamson, Jun 21 2003

Keywords

Comments

Start with the Fibonacci polynomials of A011973 (see "examples") and put in appropriate exponents, e.g. {1,1} = x^2 + 1, the generator of A002522; {1,2} = x^3 + 2x, the generator of A054602; and to get the next polynomial, multiply by x and add the previous polynomial, such that the generator for A085151 = x^4 + 3x^2 + 1 = (x)(x^3+2x) + (x^2+1).

Examples

			a(2) = f(2) of x^4 + 3x^2 + 1 = 29.
a(2) = 29 = (2)*A054602(2) + A002522(2) = (2)(12) + 5.
[2,2,2,2] = 12/29; a(2) = 29, & 12 = A054602(2). Thus [n,n,n,n] = A054602(n)/A085151(n).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := n^4 + 3n^2 + 1; Array[a, 33]
  • Python
    def A085151(n): return (m:=n**2)*(m+3)+1 # Chai Wah Wu, May 20 2025

Formula

a(n) = n^4 + 3*n^2 + 1.
a(n) = n*A054602(n) + A002522(n).
a(n) = denominator of [n, n, n, n]; with numerator = A054602(n).
a(n) = A057721(n). - R. J. Mathar, Sep 12 2008
From Chai Wah Wu, May 20 2025: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5.
G.f.: x*(-x^4 - 14*x^2 - 4*x - 5)/(x - 1)^5. (End)
Sum_{n>=1} 1/a(n) = - 1/2 - (Pi/10)*((5*sinh(Pi)+sqrt(5)*sinh(sqrt(5)*Pi))/(cosh(Pi)-cosh(sqrt(5)*Pi))). - Amiram Eldar, Jun 04 2025

Extensions

More terms from Robert G. Wilson v, Aug 06 2006