A085151 Numbers generated by the Fibonacci polynomial x^4 + 3x^2 + 1.
5, 29, 109, 305, 701, 1405, 2549, 4289, 6805, 10301, 15005, 21169, 29069, 39005, 51301, 66305, 84389, 105949, 131405, 161201, 195805, 235709, 281429, 333505, 392501, 459005, 533629, 617009, 709805, 812701, 926405, 1051649, 1189189
Offset: 1
Keywords
Examples
a(2) = f(2) of x^4 + 3x^2 + 1 = 29. a(2) = 29 = (2)*A054602(2) + A002522(2) = (2)(12) + 5. [2,2,2,2] = 12/29; a(2) = 29, & 12 = A054602(2). Thus [n,n,n,n] = A054602(n)/A085151(n).
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Mathematica
a[n_] := n^4 + 3n^2 + 1; Array[a, 33]
-
Python
def A085151(n): return (m:=n**2)*(m+3)+1 # Chai Wah Wu, May 20 2025
Formula
a(n) = n^4 + 3*n^2 + 1.
a(n) = denominator of [n, n, n, n]; with numerator = A054602(n).
a(n) = A057721(n). - R. J. Mathar, Sep 12 2008
From Chai Wah Wu, May 20 2025: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5.
G.f.: x*(-x^4 - 14*x^2 - 4*x - 5)/(x - 1)^5. (End)
Sum_{n>=1} 1/a(n) = - 1/2 - (Pi/10)*((5*sinh(Pi)+sqrt(5)*sinh(sqrt(5)*Pi))/(cosh(Pi)-cosh(sqrt(5)*Pi))). - Amiram Eldar, Jun 04 2025
Extensions
More terms from Robert G. Wilson v, Aug 06 2006
Comments