This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085161 #11 Mar 31 2012 13:21:09 %S A085161 0,1,2,3,4,7,6,5,8,9,17,14,12,21,11,20,16,10,18,19,15,13,22,23,45,37, %T A085161 31,58,28,54,42,26,49,51,40,35,63,25,48,39,34,62,30,57,44,24,46,56,38, %U A085161 32,59,33,61,53,29,55,47,43,27,50,60,52,41,36,64,65,129,107,87,170 %N A085161 Involution of natural numbers induced by Catalan Automorphism *A085161 acting on symbolless S-expressions encoded by A014486/A063171. %C A085161 This automorphism reflects the interpretations (pp)-(rr) of Stanley, obtained from the Dyck paths with the "rising slope mapping" illustrated on the example lines. %H A085161 A. Karttunen, <a href="http://oeis.org/wiki/Catalan_Automorphisms">Catalan Automorphisms</a> %H A085161 R. P. Stanley, <a href="http://www-math.mit.edu/~rstan/ec/catalan.pdf">Exercises on Catalan and Related Numbers</a> (including 66 combinatorial interpretations) %H A085161 <a href="/index/Per#IntegerPermutationCatAuto">Index entries for signature-permutations induced by Catalan automorphisms</a> %e A085161 Map the Dyck paths (Stanley's interpretation (i)) to noncrossing Murasaki-diagrams (Stanley's interpretation (rr)) by drawing a vertical line above each rising slope / and connect those vertical lines that originate from the same height without any lower valleys between, as in illustration below: %e A085161 .................................................. %e A085161 ...._____..___.................................... %e A085161 ...|.|...||...|................................... %e A085161 ...|.||..|||..|...................._.___...___.... %e A085161 ...|.||..|||..|...................|.|...|.|...|... %e A085161 ...|.||..||/\.|....i.e..equal.to..|.|.|.|.|.|.|... %e A085161 ...|.|/\.|/..\/\..................|.|.|.|.|.|.|... %e A085161 .../\/..\/......\.................|.|.|.|.|.|.|... %e A085161 ...10110011100100=11492=A014486(250).............. %e A085161 ...()(())((())())................................. %e A085161 Now this automorphism gives the parenthesization such that the corresponding Murasaki-diagram is a reflection of the original one: %e A085161 ....___.._____.................................... %e A085161 ...|...||...|.|................................... %e A085161 ...||..|||..|.|....................___..._____.... %e A085161 ...||..|||..|.|...................|...|.|...|.|... %e A085161 ...||..||/\.|.|....i.e..equal.to..|.|.|.|.|.|.|... %e A085161 ...|/\.|/..\/\/\..................|.|.|.|.|.|.|... %e A085161 .../..\/........\.................|.|.|.|.|.|.|... %e A085161 ...11001110010100=13204=A014486(360).............. %e A085161 ...(())((())()())................................. %e A085161 So we have A085161(250)=360 and A085161(360)=250. %o A085161 (Scheme function implementing this automorphism on list-structures:) %o A085161 (define (*A085161 s) (cond ((null? s) s) (else (let ((u (reverse s))) (app-to-xrt (*A085161 (car u)) (append (map *A085161 (cdr u)) (list (list)))))))) %o A085161 (define (app-to-xrt a b) (cond ((null? a) b) ((pair? (cdr a)) (cons (car a) (app-to-xrt (cdr a) b))) (else (cons (app-to-xrt (car a) b) (cdr a))))) %Y A085161 a(n) = A085163(A057508(n)) = A074684(A057164(A074683(n))). Occurs in A073200. Cf. also A085159, A085160, A085162, A085175. Alternative mappings illustrated in A086431 & A085169. %Y A085161 Number of cycles: A007123. Number of fixed points: A001405 (in each range limited by A014137 and A014138). %K A085161 nonn %O A085161 0,3 %A A085161 _Antti Karttunen_, Jun 23 2003