This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085305 #39 Sep 08 2022 08:45:11 %S A085305 0,1,2,3,11,12,13,21,22,31,101,102,103,111,112,113,121,122,201,202, %T A085305 211,212,221,301,311,1001,1002,1003,1011,1012,1013,1021,1022,1031, %U A085305 1101,1102,1103,1111,1112,1113,1121,1122,1201,1202,1211,1212,1301,2001,2002,2011 %N A085305 Numbers such that first reversing digits and then squaring equals the result of first squaring and then reversing. %C A085305 Only digits {0, 1, 2, 3} seem to arise. %C A085305 Numbers (other than 0) that end in zero are excluded. - _N. J. A. Sloane_, Mar 20 2010 %D A085305 David Wells, The Dictionary of Curious and Interesting Numbers. London: Penguin Books (1997): p. 124. %H A085305 Reinhard Zumkeller, <a href="/A085305/b085305.txt">Table of n, a(n) for n = 1..1000</a> %H A085305 <a href="/index/Sq#sqrev">Index entry for sequences related to reversing digits of squares</a> %F A085305 Solutions to rev(x^2) = rev(x)^2. %e A085305 n = 13 is a term because 31^2 = 961 = rev(169) = rev(13^2) = rev(rev(31)^2). %t A085305 rt[x_] := tn[Reverse[IntegerDigits[x]]] Do[s = rt[n^2]; s1=rt[n]^2; If[Equal[s, s1]&&!Equal[Mod[n, 10], 0], Print[{n, s, rt[s1]}]], {n, 0, 1000000}] %t A085305 (* Second program: *) %t A085305 Select[Range[0, 1999], Mod[#,10] != 0 && FromDigits[Reverse[IntegerDigits[#^2]]] == FromDigits[Reverse[IntegerDigits[#]]]^2 &] (* _Alonso del Arte_, Oct 08 2012; corrected by _Jean-François Alcover_, Jan 11 2021 *) %o A085305 a085305 n = a085305_list !! (n-1) %o A085305 a085305_list = 0 : filter (\x -> x `mod` 10 > 0 %o A085305 && a004086 (x^2) == (a004086 x)^2) [1..] %o A085305 -- _Reinhard Zumkeller_, Jul 08 2011 %o A085305 (Magma) [0] cat [ m: n in [1..1810] | Reverse(Intseq(m^2)) eq Intseq(Seqint(Reverse(Intseq(m)))^2) where m is n+Floor((n-1)/9) ]; // _Bruno Berselli_, Jul 08 2011 %o A085305 (PARI) isok(x) = (x==0) || ((x%10) && fromdigits(Vecrev(digits(x^2))) == fromdigits(Vecrev(digits(x)))^2); \\ _Michel Marcus_, Jan 11 2021 %Y A085305 Cf. A085306. See A061909 for another version. %K A085305 base,nonn %O A085305 1,3 %A A085305 _Labos Elemer_, Jun 27 2003