A085306 Prime numbers such that first reversing digits and after squaring equals the result of first-squaring and after-reversing. Primes in A085305.
2, 3, 11, 13, 31, 101, 103, 113, 211, 311, 1013, 1021, 1031, 1103, 1201, 1301, 2011, 2111, 3001, 3011, 10103, 10111, 10211, 11003, 11113, 12011, 12101, 13001, 20011, 20021, 20101, 20201, 21001, 21011, 21101, 22111, 30011, 100003, 100103, 101021
Offset: 1
Examples
n=13 is here because 31^2 = 961 = rev(169) = rev(13^2) = rev(rev(31)^2). 65 solutions below 1000000.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A085305.
Programs
-
Mathematica
rt[x_] := tn[Reverse[IntegerDigits[x]]] Do[s=rt[n^2]; s1=rt[n]^2; If[Equal[s, s1]&& !Equal[Mod[n, 10], 0]&&PrimeQ[n], Print[n]], {n, 1, 1000000}] (* Second program: *) Select[Prime[Range[10^5]], IntegerReverse[#]^2 == IntegerReverse[#^2]&] (* Jean-François Alcover, Feb 13 2021 *)
Formula
Prime number solutions to rev(x^2) = rev(x)^2.