A085311 Number of distinct 8th powers modulo n.
1, 2, 2, 2, 2, 4, 4, 2, 4, 4, 6, 4, 4, 8, 4, 2, 3, 8, 10, 4, 8, 12, 12, 4, 6, 8, 10, 8, 8, 8, 16, 2, 12, 6, 8, 8, 10, 20, 8, 4, 6, 16, 22, 12, 8, 24, 24, 4, 22, 12, 6, 8, 14, 20, 12, 8, 20, 16, 30, 8, 16, 32, 16, 3, 8, 24, 34, 6, 24, 16, 36, 8, 10, 20, 12, 20, 24, 16, 40, 4, 28, 12, 42, 16, 6
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- S. Li, On the number of elements with maximal order in the multiplicative group modulo n, Acta Arithm. 86 (2) (1998) 113, see proof of theorem 2.1
- R. J. Mathar, Size of the set of residues of integer powers of fixed exponent, (2017).
Crossrefs
Programs
-
Maple
A085311 := proc(m) {seq( modp(b^8,m),b=0..m-1) }; nops(%) ; end proc: seq(A085311(m),m=1..100) ; # R. J. Mathar, Sep 22 2017
-
Mathematica
a[n_] := Table[PowerMod[i, 8, n], {i, 0, n - 1}] // Union // Length; Array[a, 100] (* Jean-François Alcover, Mar 24 2020 *)
-
PARI
a(n)=my(f=factor(n)); prod(i=1, #f[, 1], my(k=f[i, 1]^f[i, 2]); #vecsort(vector(k, i, i^8%k), , 8)) \\ Charles R Greathouse IV, Sep 05 2013
Comments