cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085329 Non-palindromic solutions to sigma(R(n)) = sigma(n), where R = A004086 is digit-reversal.

This page as a plain text file.
%I A085329 #29 May 15 2025 01:05:15
%S A085329 528,825,1561,1651,4064,4604,5346,5795,5975,6435,15092,15732,21252,
%T A085329 23751,25212,29051,34536,38115,39325,39516,51183,52393,53295,53768,
%U A085329 59235,61593,63543,64328,69368,70577,77507,81558,82346,85518,86396
%N A085329 Non-palindromic solutions to sigma(R(n)) = sigma(n), where R = A004086 is digit-reversal.
%C A085329 Without the non-palindromic condition, the first 62 terms would be identical to the list of palindromes A002113. - _M. F. Hasler_, May 13 2025
%H A085329 Donovan Johnson, <a href="/A085329/b085329.txt">Table of n, a(n) for n = 1..1000</a>
%F A085329 Solutions to (A000203(x) = A000203(A004086(x)) and A004086(x) <> x).
%e A085329 sigma(528) = sigma(825) = 1488.
%t A085329 nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] red[x_] := Reverse[IntegerDigits[x]] Do[s=DivisorSigma[1, n]; s1=DivisorSigma[1, tn[red[n]]]; If[Equal[s, s1]&&!Equal[n, tn[red[n]]], Print[{n, s}]], {n, 1, 1000000}]
%t A085329 srnQ[n_]:=Module[{idn=IntegerDigits[n],ridn},ridn=Reverse[idn];idn!=ridn && DivisorSigma[1,n]==DivisorSigma[1,FromDigits[ridn]]]; Select[Range[ 100000], srnQ] (* _Harvey P. Dale_, Oct 25 2011 *)
%o A085329 (PARI) select( {is_A085329(n, r=A004086(n))=sigma(n)==sigma(r)&&n!=r}, [1..50000]) \\ _M. F. Hasler_, May 13 2025
%o A085329 (Python)
%o A085329 from sympy import divisor_sigma as sigma
%o A085329 def is_A085329(n): return sigma(n)==sigma(r:=int(str(n)[::-1])) and n!=r # _M. F. Hasler_, May 13 2025
%Y A085329 Cf. A000203 (sigma), A004086 (R), A350867 (similar with d = sigma_0).
%K A085329 base,nonn
%O A085329 1,1
%A A085329 _Labos Elemer_, Jul 04 2003