A069137 Numbers which are sums of neither 1, 2, 3, 4, 5 or 6 nonnegative cubes.
7, 14, 15, 21, 22, 23, 42, 47, 49, 50, 61, 77, 85, 87, 103, 106, 111, 112, 113, 114, 122, 140, 148, 159, 166, 167, 174, 175, 178, 185, 186, 204, 211, 212, 223, 229, 230, 231, 237, 238, 239, 276, 292, 295, 300, 302, 303, 311, 327, 329, 337, 340, 356, 363, 364
Offset: 1
Keywords
Examples
Numbers which need at least seven terms to represent them as a sum of positive cubes: 14=8+1+1+1+1+1+1.
References
- Bohman, Jan and Froberg, Carl-Erik; Numerical investigation of Waring's problem for cubes, Nordisk Tidskr. Informationsbehandling (BIT) 21 (1981), 118-122.
- F. Romani, Computations concerning Waring's problem, Calcolo, 19 (1982), 415-431.
Links
- T. D. Noe, Table of n, a(n) for n=1..138
- Jean-Marc Deshouillers, Francois Hennecart and Bernard Landreau; appendix by I. Gusti Putu Purnaba, 7373170279850, Math. Comp. 69 (2000), 421-439.
- Index entries for sequences related to sums of cubes
Comments