This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A085351 #11 Jan 07 2022 15:22:56 %S A085351 1,6,34,186,994,5226,27154,139866,715714,3644106,18482674,93461946, %T A085351 471504034,2374297386,11938595794,59961414426,300880813954, %U A085351 1508699037066,7560675054514,37872094749306,189635351653474 %N A085351 Expansion of (1-3*x)/((1-4*x)*(1-5*x)). %C A085351 Binomial transform of A085350. Second binomial transform of poly-Bernoulli numbers A027649. %H A085351 Colin Barker, <a href="/A085351/b085351.txt">Table of n, a(n) for n = 0..1000</a> %H A085351 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (9,-20). %F A085351 G.f.: (1-3*x)/((1-4*x)*(1-5*x)). %F A085351 a(n) = 2*5^n - 4^n. %F A085351 a(n) = 9*a(n-1) - 20*a(n-2) for n>1. - _Colin Barker_, Jun 25 2020 %t A085351 CoefficientList[Series[(1-3x)/((1-4x)(1-5x)),{x,0,20}],x] (* or *) LinearRecurrence[{9,-20},{1,6},30] (* _Harvey P. Dale_, Jan 07 2022 *) %o A085351 (PARI) Vec((1 - 3*x) / ((1 - 4*x)*(1 - 5*x)) + O(x^25)) \\ _Colin Barker_, Jun 25 2020 %Y A085351 Cf. A027649, A085350, A085352. %K A085351 easy,nonn %O A085351 0,2 %A A085351 _Paul Barry_, Jun 24 2003