A092078 Array of number of partitions of n into m parts which have the parts of the partitions of m as exponents.
1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 3, 1, 0, 2, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
N=13 = 10 + 3 with 10=A000217(4), hence n=5 and m=3. N=10 = 6 + 4 with 6=A000217(3), hence n=4 and m=4. The sequence entry nr. p=16, which is 0, belongs to (n=4,m=3; k=3) because 16 = 10 + 3 + 3 with 10=A085360(3), hence n=4 and 3=A026905(2), hence m=3. a(N=13,k=2)=2, n=5, m=3; there are exactly 2 partitions of 5 into 3 parts, each having the parts of the second (k=2) partition of 3, i.e. 1,2, as exponents. These two 3-partitions of 5 are: [1^2, 3^1] and [1^1, 2^2], which are all the 3-partitions of 5 because the other entries of row N=13 are 0.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 831-2.
- Wolfdieter Lang, First 36 rows and more comments.
Crossrefs
Cf. A092079.
Comments