A085394 Numerators of convergents to Thue-Morse constant.
0, 1, 2, 5, 7, 33, 106, 563, 1232, 1795, 8412, 18619, 27031, 153774, 6793087, 6946861, 34580531, 41527392, 117635315, 512068652, 629703967, 1141772619, 1771476586, 9999155549, 141759654272, 151758809821, 7729700145322, 116097260989651
Offset: 1
Examples
[2,2,2,1,4] = 33/80 = .4125
Programs
-
Mathematica
mt = 0; Do[ mt = ToString[mt] <> ToString[(10^(2^n) - 1)/9 - ToExpression[mt]], {n, 0, 7}]; d = RealDigits[ N[ ToExpression[mt], 2^7]][[1]]; a = 0; Do[ a = a + N[ d[[n]]/2^(n + 1), 100], {n, 1, 2^7}]; f[n_] := FromContinuedFraction[ ContinuedFraction[a, n]]; Table[ Numerator[f[n]], {n, 1, 28}]
Formula
In continued fraction form, the Thue-Morse constant .4124540336401...; is [2, 2, 2, 1, 4, 3, 5, 2, 1, 4...], with A014572(1) = 2, the first partial quotient. Underneath each term we write the convergents corresponding to the continued fraction: [2] = 1/2, [2, 2] = 2/5, [2, 2, 2] = 5/12 and so on, the convergents being: 1/2, 2/5, 5/12, 7/17, 33/80, 106/257, 563/1365, 1232/2987, 1795/4352, 8412/20395...where the latter = .412454032...
Extensions
Edited by Robert G. Wilson v, Jul 15 2003