cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085396 Numerator and denominator sums of convergents to the Thue-Morse constant, 0.412454033...

Original entry on oeis.org

1, 3, 7, 17, 24, 113, 363, 1928, 4219, 6147, 28807, 63761, 92568, 526601, 23263012, 23789613, 118421464, 142211077, 402843618, 1753585549, 2156429167, 3910014716, 6066443883, 34242234131, 485457721717, 519699955848
Offset: 1

Views

Author

Gary W. Adamson, Jun 27 2003

Keywords

Comments

Let k = 0.412454..., then A085396(n)/A085394(n) [i.e., (numerator + denominator)/(numerator)] converges upon 3.424512... as n approaches infinity, where 3.424... = (k+1)/k. A085396(n)/A085395(n) [i.e., (numerator + denominator)/(denominator)], converges upon k+1, = 1.412454... Check: A085396(6)/A085394(6) = 363/106 = 3.4245...; while A085396(6)/A085395(6) = 393/257 = 1.41245... The constants (k+1) and (k+1)/k are generators for the Beatty pairs for the Thue-Morse constant, where the pairs are [(n*(k+1), (n*(k+1)/k], n = 1,2,3,...

Examples

			Convergents to the Thue-Morse constant 0.4124540336... are derived from continued fraction form shown in A014572, starting with A014572(1) = 2; then 0.412454... = [2, 2, 2, 1, 4, 3, 5, 2, 1, ...] (A014572). Example [2] = 1/2, [2,2] = 2/5, [2,2,2] = 5/12 and so on.
		

Crossrefs

Programs

  • Mathematica
    mt = 0; Do[ mt = ToString[mt] <> ToString[(10^(2^n) - 1)/9 - ToExpression[mt]], {n, 0, 7}];
    d = RealDigits[ N[ ToExpression[mt], 2^7]][[1]];
    a = 0; Do[ a = a + N[ d[[n]]/2^(n + 1), 100], {n, 1, 2^7}];
    f[n_] := FromContinuedFraction[ ContinuedFraction[a, n]];
    Table[ Numerator[ f[n]] + Denominator[ f[n]], {n, 2, 27}]

Formula

a(n) = A085394(n) + A085395(n) = numerator and denominator sums for convergents of 0.412454..., the convergents being 1/2, 2/5, 5/12, 7/17, 33/80, 106/257, 563/1365, 1232/2987, 1795/4352, 8412/20395, ...

Extensions

Edited by Robert G. Wilson v, Jul 15 2003